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Variational bound on energy dissipation in plane Couette flow

Rolf Nicodemus,* Siegfried Grossmann,† and Martin Holthaus‡

Fachbereich Physik der Philipps-Universita¨t, Renthof 6, D-35032 Marburg, Germany
~Received 7 August 1997!

We present numerical solutions to the extended Doering-Constantin variational principle for upper bounds
on the energy dissipation rate in turbulent plane Couette flow. Using the compound matrix technique in order
to reformulate this principle’s spectral constraint, we derive a system of equations that is amenable to numeri-
cal treatment in the entire range from low to asymptotically high Reynolds numbers. Our variational bound
exhibits a minimum at intermediate Reynolds numbers and reproduces the Busse bound in the asymptotic
regime. As a consequence of a bifurcation of the minimizing wave numbers, there exist two length scales that
determine the optimal upper bound: the effective width of the variational profiles’ boundary segments and the
extension of their flat interior part.@S1063-651X~97!07712-X#

PACS number~s!: 47.27.Nz, 03.40.Gc, 47.20.Ft
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I. INTRODUCTION

Can one derive upper bounds on the rate of energy d
pation in turbulent shear flows that are both mathematic
rigorous and physically meaningful, i.e., ‘‘sharp’’? Th
question is of enormous conceptual importance in the the
of turbulence, since the energy dissipation rate is the cen
object in classical turbulence theories@1–5#, and its behavior
at high Reynolds numbers may reveal whether there are
termittency corrections to classical scaling@6,7#. Since full
numerical simulations of shear flows with Reynolds numb
of the order of 106 or above are out of reach, and will rema
so in the foreseeable future, rigorous estimates of the d
pation rate derived directly from the Navier-Stokes equati
are one of the few tools left to the theorist for approach
such questions.

The idea of bounding the rate of energy dissipation w
the help of rigorous inequalities, rather than trying to so
the equations of motion under plausible but essentially
controlled approximations, became popular in the ea
1970s, with the formulation and further exploration of t
Howard-Busse theory@8#. In particular, Busse@9–11# was
able to derive an asymptotic upper bound on energy diss
tion in plane Couette flow that is in accordance with class
theories, but lies roughly an order of magnitude above
perimentally measured data@12,13#.

After this state of affairs had remained unchanged
about 25 years, Doering and Constantin put forth a differ
variational principle for computing quantities characterizi
turbulent flows@14–16#. Whereas the early applications o
this principle to the plane Couette problem@14,17,18# did not
exhaust the principle and produced bounds on the dissipa
rate that could not compete with Busse’s, subsequent an
sis by Kerswell@19# revealed that the Doering-Constant
principle, after being extended along the lines worked ou
Ref. @20#, actually reproduces the Busse bound in t
asymptotic regime. Kerswell arrived at this conclusion
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mapping the extended Doering-Constantin principle to
other variational principle that also occurs in Busse’s the
and then applying Busse’s method of solution. However,
emphasized by Kerswell himself@19#, there is still no math-
ematical proof that Busse’s solution is really extremal,
though this is generally believed to be the case. Moreo
the Busse bound pertains to the limit of asymptotically hi
Reynolds numbers only. Hence what is needed is a solu
to the extended Doering-Constantin principle that~i! fully
exhausts this principle,~ii ! spans the entire range from low t
asymptotically high Reynolds numbers, and~iii ! is logically
independent from Busse’s solution.

In this paper we present a full-fledged numerical analy
of the improved Doering-Constantin variational principle f
the plane Couette flow that meets these requirements.
goal here is not merely to derive the best possible bound,
we also wish to explore the working principles of the ne
method. Even if statements concerning the existence of n
classical scaling remain out of reach at present, the pote
power of the novel variational principle lies in its great co
ceptual clarity. Once thoroughly understood, it might se
as a germ for the formulation of a still more advanced pr
ciple that could actually allow one to attack the scaling qu
tions.

We organize our material as follows. After having stat
the variational principle in Sec. II, Sec. III will be devoted
the resolution of the most demanding technical difficulty, t
implementation of the principle’s spectral constraint. It
this constraint that seems to have hindered previous num
cal work @21# to reach the asymptotic regime. Our resu
will then be described in Sec. IV. Section V offers a co
cluding discussion. Some important technical details c
cerning the derivation of the system of differential equatio
actually used in the numerical computations can be found
Appendix A, while Appendix B contains a brief but instruc
tive example that illustrates the key points of our method a
underlines its accuracy, without too much technical burd

Since the numerical work is fairly involved, it would
hardly have been possible to carry out the entire invest
tion without some analytical guidance. Our guide is the e
ample problem of the Couette flow without spanwise degr
of freedom, referred to as therestricted Couette problemin
6774 © 1997 The American Physical Society
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56 6775VARIATIONAL BOUND ON ENERGY DISSIPATION IN . . .
the following, which has been treated in detail in Ref.@22#
and shows several features that will reappear here in
context of the unrestricted problem.

II. VARIATIONAL PRINCIPLE

We consider a layer of an incompressible fluid with kin
matic viscosityn that is confined between two infinitely ex
tended, parallel rigid plates separated by a distanceh. The
lower plate, coinciding with the planez50 of a Cartesian
coordinate system, is fixed, whereas the upper plate atz5h
is sheared with constant velocityU in the positive-x direc-
tion. The dynamics of the fluid’s velocity fieldu(x,t) are
determined by the equations

] tu1u•“u1“p5nDu ~Navier-Stokes equations!,
~1!

“•u50 ~ incompressibility!, ~2!

u~x,y,0,t !50, u~x,y,h,t !5U x̂

~no-slip boundary conditions!; ~3!

herep denotes the kinematic pressure andx̂ is the unit vector
in thex direction. In addition, in both thex andy directions
periodic boundary conditions~BCs! are imposed onu andp.
The time-averaged rate of dissipated energy per mas
given by

«T[
1

T E
0

T

dtH n

V E
V

d3xF (
i , j 5x,y,z

~] jui !
2G J , ~4!

whereV is the periodicity volume. Our aim is to derive
mathematically rigorous upper bound on the long-time lim
« of «T ,

«[ lim
T→`

«T . ~5!

Equivalently, we consider the nondimensionalized dissi
tion rate

c«~Re![
«

U3h21 , ~6!

where Re5Uh/n is the Reynolds number. For calculating th
bound we will employ thebackground flow methodas re-
cently put forth by Doering and Constantin@14–17# and de-
veloped further in Ref.@20#.

It is known @14# that the rate of energy dissipated by t
laminar flow u(x,t)5(Uz/h) x̂ provides a rigorouslower
boundc« on c« for all Re, namely,c«(Re)>c«(Re)[Re21.
Moreover, energy stability theory@23,24# guarantees that th
laminar flow is the only possible stable flow at least up to
energy stability limit ReES. Hence we have the exact identi

c«~Re!5Re21 for Re,ReES'82.65. ~7!

From an early generalization of energy stability theory,
optimum theory devised by Busse@9–11#, one obtains an
approximate asymptotic upper bound@25#
e

-

is

t

-

e

e

lim
Re→`

c«~Re!&0.010. ~8!

Note that the right-hand side of this inequality does not
pend on the Reynolds number, so that this bound is in ac
dance with classical turbulence theories@1–5#. @For a discus-
sion of the connection between the Re dependence ofc«(Re)
and possible intermittency corrections see Ref.@6#.#

The background flow approach can likewise be cons
ered as a generalization of energy stability theory, but it
a distinctly different twist. Instead of decomposing the v
locity field u into a z-dependent, plane-averaged mean flo
and the fluctuations around this flow, as Busse did in
optimum theory, Doering and Constantin@17# take up an
idea by Hopf@26# and write

u~x,t !5U~x!1v~x,t !. ~9!

Now the stationary and divergence-free auxiliary fieldU~x!,
dubbed the background flow, has to carry the physical B
namely,U(x,y,0)50, U(x,y,h)5U x̂, andU~x! is periodic
in the x and y directions. However, apart from these fair
mild specifications, the background flow remains complet
arbitrary. Hence this decomposition~9! serves as the startin
point of a variational principle@14#: Plug it into expression
~4! for the energy dissipation rate, get rid of the deviatio
v(x,t) with the help of both the equations of motion~1!–~3!
and rigorous inequalities that bound the dissipation rate fr
above, and then adjust the background flow such that
upper bound becomes as low as possible.

To carry out this program, we restrict ourselves to ba
ground flows that are given by a merely height-depend
profile f~z!, which should reflect the symmetry of the Co
ette geometry. That is, we admit only background flows
the form

U~x![Uf~z!x̂, ~10!

with

f~0!50, f~1!51, f~z!512f~12z!, ~11!

where z[z/h is the dimensionless coordinate in cros
stream direction. The resulting inequality that bounds
dissipation rate then reads@20#

c«~Re!<F11
a2

4~a21!
D$f%GRe21, ~12!

wherea.1 is a dimensionless balance parameter andD$f%
denotes the profile functional

D$f%[E
0

1

dz @f8~z!#221. ~13!

The bound on the dissipation rate provided by the right-ha
side of the inequality~12! can be minimized by varying both
the profilef and the balance parametera. However, there is
a substantial technical difficulty:The inequality~12! is valid
only as long as the profilef satisfies a spectral constrain
@14#. This spectral constraint demands that all eigenvaluel
of the linear eigenvalue problem
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lV522h2DV1Rf8S 0 0 1

0 0 0

1 0 0
D V1“P,

05“•V, V~]V!50 ~14!

FIG. 1. Graph of an upper bound onc« produced according to
Eq. ~16! by the profilef shown in the inset.
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for the stationary velocity fieldsV be positive. Since the
background flow already carries the physical boundary c
ditions,V has to satisfy homogeneous BCs, that is,V has to
vanish on the material walls]V at z50 and z5h and be
periodic in thex and y directions. Note that the balanc
parametera enters into this eigenvalue problem through t
rescaled Reynolds number

R[
a

a21
Re. ~15!

In effect, the spectral constraint~14! restricts, for each
Reynolds number, the combinations of profiles and bala
parameters that are admissible to the variational princ
~12!. The highly nontrivial task of evaluating this constrai
consists in determining, for each candidate profilef sepa-
rately, that rescaled Reynolds numberR where the smalles
eigenvalue passes through zero. We will denote this num
asRc$f% in the following.

Providedwe know how to computeRc$f% ~this task will
be taken up in the following section!, eachf leads to a
rigorous upper bound onc« in the interval 0<Re,Rc$f%.
After optimization of the balance parameter, this bou
adopts the form@20#
c«<H @11D$f%#Re21 for 0<Re, 1
2 Rc$f%

F11
D$f%Rc$f%2

4~Rc$f%2Re!ReGRe21 for 1
2 Rc$f%<Re,Rc$f% . ~16!
ow
ted
Figure 1 shows the graph of such an upper bound produ
by a generic profilef. When a suitable class of test profile
has been selected, the lower envelope of all graphs stemm
from the individual profiles then is the optimal upper bou
on c«(Re) that can be obtained from this class, i.e., the
lution to the variational principle~12! within this class.

III. EVALUATION OF THE SPECTRAL CONSTRAINT

We nondimensionalize the problem by choosing the g
width h as the unit of length. By virtue of the linearity o
Eqs.~14! and the homogeneous BCs imposed on the eig
vectorsV, it is not necessary to specify a scale of veloc
explicitly. For the sake of notational simplicity we denote
nondimensionalized quantities by the same symbols as
dimension-carrying counterparts. For instance, the velo
field V~x! now is regarded as a dimensionless vector funct
of the dimensionless coordinatesx, y, andz.

Utilizing the periodic BCs, we start from the ansatz

V~x![v~z!ei ~kxx1kyy!, P~x![p~z!ei ~kxx1kyy!

and transform the eigenvalue equations~14! into the system

lvx522~]z
22k2!vx1Rf8vz1 ikxp, ~17!

lvy522~]z
22k2!vy1 ikyp, ~18!
ed

ing

-

p

n-

l
eir
ty
n

lvz522~]z
22k2!vz1Rf8vx1p8, ~19!

05 ikxvx1 ikyvy1vz8 , ~20!

with

k[Akx
21ky

2.

The corresponding BCs for the functionv(z) read

v~0!5v~1!50. ~21!

If ky50 we encounter the model problem of a Couette fl
without spanwise degrees of freedom. Since this restric
problem has already been studied in detail in Ref.@22#, we
only need to considerkyÞ0 here.

Defining the linear operator

L[2~]z
22k2!1l,

Eqs.~17! and ~18! together with Eq.~20! yield

p5
1

k2 @Lvz81 ikxRf8vz#. ~22!

Hence Eq.~17! can be put in the form
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Lvx5
1

k2 @ky
2Rf8vz1 ikxLvz8# ~23!

and we finally obtain from Eq.~19! a rather intricate equa
tion for vz(z):

L2~]z
22k2!vz24

f~2!

f8
L~]z

22k2!vz8

22Ff~3!

f8
22S f~2!

f8
D 2GL~]z

22k2!vz1~kyRf8!2vz

1 ikxRf8H 2Lvz81
f~2!

f8
Lvz14Ff~3!

f8
2S f~2!

f8
D 2Gvz8

12Ff~4!

f8
23

f~3!f~2!

~f8!2 12S f~2!

f8
D 3GvzJ 50, ~24!

where we rely on the assumption thatf8(z) does not vanish
for all z in the interval@0,1#. The corresponding BCs forvz
are given by

vz~z!uz50,150, vz8~z!uz50,150, L~]z
22k2!vz~z!uz50,150.

~25!

Equations ~24! and ~25! constitute a sixth-order Sturm
Liouville eigenvalue problem. If one succeeds in solving t
problem, that is, in computing an eigenvaluel and its eigen-
function vz

(l)(z) for some fixed profilef, wave numberskx

and ky , and a rescaled Reynolds numberR, then one can
determine the associated componentsvx

(l)(z) and vy
(l)(z),

together withp(l)(z), from Eqs. ~23!, ~18!, and ~22!, so
that an eigenvalue and a corresponding eigenve
„V(l)(x),P(l)(x)… of the original eigenvalue problem~14!
have been found.

Since we cannot hope to find an analytical solution to t
formidable problem for each candidate profilef, we have to
resort to a numerical treatment. This requires us to put
Sturm-Liouville problem in a form that can actually be de
with on a computer. We defer the technical details of t
reformulation, which rely heavily on the so-called compou
matrix method@27#, to Appendix A and present only the fina
equations here. Although these equations may appear,
cursory glance, even more cumbersome than the orig
problem posed by Eqs.~24! and ~25!, they have actually
been found to be well suited for computing the ‘‘critical
rescaled Reynolds numbersRc$f% for all situations of prac-
tical interest, as will be amply demonstrated in Sec. IV.

To begin with, we define the abbreviations

Rx[
kxR

k2 , Ry[
kyR

k2 ~26!

and the auxiliary functions

f1~z![f8~z!,

f2~z![
f~2!~z!

2k
,

s

or

s

e
t
s

a
al

f 1~z![2
f~2!~z!

f8~z!
,

f 2~z![3k1
2

k

f~3!~z!

f8~z!
2

4

k S f~2!~z!

f8~z! D 2

,

g1~z![f8~z!2
1

k2 f~3!~z!1
1

k2

@f~2!~z!#2

f8~z!
,

g2~z![
1

2k
f~2!~z!2

1

2k3 f~4!~z!1
3

2k3

f~3!~z!f~2!~z!

f8~z!

2
1

k3

@f~2!~z!#3

@f8~z!#2 ,

FRy
~z![k1

1

k

f~3!~z!

f8~z!
2

2

k S f~2!~z!

f8~z! D 2

2
1

4k
@Ryf8~z!#2.

~27!

The compound matrix technique outlined in Appendix
then yields the following system of 20 ordinary, first-ord
complex differential equations:

y185k@23y11y22 1
2 y42 1

2 y6#,

y285k@23y21y31y52 1
2 y8#,

y385k@23y31y41y6#,

y485k@ 3
2 y323y41y71 1

2 y10#1 f 1@22y21y4#2 f 2y1

2 iRx@f1y21f2~y11 1
2 y3!#,

y585k@23y51y61 1
2 y91y11#,

y685k@23y61y71y81 1
2 y101y12#,

y785k@ 3
2 y623y71y91y13#1 f 1@2y122y51y7#

2 iRx@f1y51 1
2 f2y61g1y1#,

y885k@23y81y91y14#,

y985k@ 3
2 y823y91y101y15#1 f 1@2y21y9#1 f 2y5

2 iRx@f2~2y51 1
2 y8!1g1y2#,

y108 5k@23y101y16#1 f 1@2y312y81y10#1 f 2y6

2 iRx@2f1y82f2y61g1y3#,

y118 5k@23y111y121
1
2 y151

1
2 y17#,

y128 5k@23y121y131y141
1
2 y16#,

y138 5k@ 3
2 y1223y131y152

1
2 y19#1 f 1@22y111y13#

1FRy
y11 iRx@2f1y112

1
2 f2y121g2y1#,
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y148 5k@23y141y151y17#,

y158 5k@ 3
2 y1423y151y161y182

1
2 y20#1 f 1y151 f 2y11

1FRy
y21 iRx@f2~y112

1
2 y14!1g2y2#,

y168 5k@23y161y19#1 f 1@2y141y16#1 f 2y121FRy
y3

1 iRx@f1y141f2y121g2y3#,

y178 5k@23y171y182
1
2 y20#,

y188 5k@ 3
2 y1723y181y19#1 f 1@y111y18#1FRy

y5

1 iRx@2 1
2 f2y171g1y111g2y5#,

y198 5k@23y191y20#1 f 1@y1212y171y19#1FRy
y6

1 iRx@f1y171g1y121g2y6#,

y208 523ky201 f 1@y141y20#2 f 2y171FRy
y8

1 iRx@2f2y171g1y141g2y8#. ~28!

These equations have to be supplemented with the in
conditions required for their numerical integration fro
z50 to z51:

y20~0!51, yi~0!50 for i 51, . . . ,19. ~29!

In addition, we merely have to satisfy the fairly simp
boundary condition

y1~1!50. ~30!

What matters here is precisely the replacement of
rather troublesome, symmetric boundary conditions~25! ac-
companying the original Sturm-Liouville problem by th
asymmetric boundary conditions~29! and ~30!, since these
boundary conditions lend themselves to a standard shoo
method: Just integrate the system~28! with the initial condi-
tions ~29!, monitor the resulting value ofy1(1), andadjust
the system’s parameters such that this value becomes z
y
-

th
al

e

ng

o.

The price to pay for this simplification is a rather comp
cated system of equations. But still, the spirit underlyi
these equations is simple. Since we are not interested in
full spectrum of the eigenvalue problem~14! @or, equiva-
lently, in that of the Sturm-Liouville problem~24! and~25!#,
but only in that valueRc$f% of R where the lowest eigen
value associated with some profilef passes through zero, w
were entitled to setl50 in the derivation of the system~28!.
We then keep both the profilef and the wave vectork fixed
when solving the initial-value problem~28! and ~29! and
adjust only the parameterR. The smallest value ofR where
y1(1) vanishes then equals that value ofR where the small-
est eigenvaluel becomes zero, for this particularf and k.
We denote thisR as

R0$f%~k!. ~31!

The desired numberRc$f% then is identified as the globa
minimum, taken over all wave vectors. Since the wave nu
bers kx and ky effectively enter into the system~28! only
through their squareskx

2 andky
2, we have

Rc$f%5 min
kx>0, ky.0

$R0$f%~k!%. ~32!

Thus the evaluation of the spectral constraint, i.e., the de
mination of the maximal rescaled Reynolds numberRc$f%
up to which a given profilef remains an admissible tes
profile for the variational principle~12!, requires some labor
One first has to determine for thatf and a representative se
of wave vectorsk the first zero ofy1(1) that occurs whenR
is increased from zero to positive numbers. This yields
values ~31!. In a second step one has to locate the glo
minimum of all these values, which equalsRc$f%.

IV. RESULTS

Now that we are in a position to evaluate the spec
constraint ~14! for an arbitrary profilef(z), we have to
specify a class of test profiles that is likely to exhaust
variational principle~12! or ~16!. Based on the analysis o
the restricted Couette problem, we propose the follow
class of variational profiles:
f~z!5H 1
2 ~12p!1pz2 1

2 ~12p!~12z/d!n for 0<z<d

1
2 ~12p!1pz for d,z,12d

1
2 ~12p!1pz1 1

2 ~12p!@12~12z!/d#n for 12d<z<1.

~33!
e
e.

ses
m-
r

nal
u-
These profiles contain three independent parameters:~i! the
boundary layer thicknessd (0,d<1/2), ~ii ! the slopep of
the profile in the interior (0,p<1), and~iii ! the polynomial
order n (n54,5, . . . ) of theboundary layer segments. B
construction, eachf is n21 times continuously differen
tiable at the matching pointsz5d and z512d. Since the
right-hand side of the system~28! of differential equations
contains derivatives of the profile up to the fourth order,
 e

smallest value ofn allowed by this system is 4. In the cas
n54 one encounters a discontinuity of the fourth derivativ
However, as long as this discontinuity remains finite, it po
no problem for the numerical integration. For practical co
putations we restrict the parametern to values less than o
equal to 1000.

At this point it needs to be emphasized that the variatio
parametern plays an important role for the numerical sol
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tion of the variational principle. If this parameter was arti
cially kept fixed, that is, if one considered the profiles~33!
with a constant parametern54, say, then one would inevi
tably be confronted with serious divergences that are har
deal with numerically and therefore would drastically redu
the maximal attainable Reynolds numbers. The form
reasons for these difficulties lie in the expressio
f (2)(z)/f8(z) andf (3)(z)/f8(z), which enter into the sys
tem ~28! through the auxiliary functions~27!. Namely, for
high Reynolds numbers the optimized profiles tend to
come flat in the interior, so that one has to face small
nominators.

Since the solution to this technical problem, achiev
with the help of the variational parametern, is of outstand-
ing practical importance, we illustrate it with an examp
Let us first note that the parametersd and n are related to
each other by the profile’s slope atz50 ~or, equivalently, at
z51!:

f8~0!5p1
n

2d
~12p!. ~34!

Second, we anticipate the high-Re-scaling behavior of
optimized profiles: We havef8(0);a Re andf8(1/2)5p
;b Re21, with constantsa andb, as will be shown later on
@cf. Eqs.~39! and ~40!#. This implies that the ration/2d in
Eq. ~34! necessarily has to increase about linearly with
when Re becomes large. We now focus on two differ
parameter combinations:~a! d50.5 andn51000 and~b! d
50.002 andn54. In both cases the ration/2d takes on the
value 1000 and what matters now is the way the divergen
of f (2)(z)/f8(z) and f (3)(z)/f8(z) manifest themselves
when the profile slopep approaches zero. Case~a! is actually
met in high-Re solutions of the variational principle wh
the shape of the profiles’ boundary segments is allowed
vary, whereas this shape is artificially kept fixed in case~b!.
In Figs. 2 and 3 we demonstrate for these two cases
response off (2)(z)/f8(z) to the variation ofp from 0.1 to
smaller values, depicting only the relevant intervals ofz. In
case~a! the decrease ofp merely entails a shift of the smoot

FIG. 2. Behavior off (2)(z)/f8(z) in the interval 0<z<0.015
for d50.5 andn51000. From left to right: graphs that result whe
p is successively diminished by factors of 1/10 fromp50.1 to p
51026.
to
e
l

s

-
-

d

.

e

e
t

es
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ascent from the~negative! value atz50 to zero. In marked
contrast, in case~b! the same decrease ofp produces a rathe
sharp singularity in the vicinity ofz5d. The expression
2f (3)(z)/f8(z) shows, qualitatively, the same behavior, b
even more pronounced. While the functions shown in Fig
are easy to handle, a singularity like the one that develop
Fig. 3 would soon limit the accessible values ofp and thus
prevent us from reaching asymptotically high Reynolds nu
bers.

At this point, an important difference between the fu
three-dimensional plane Couette problem and the restric
two-dimensional problem without spanwise degrees of fr
dom shows up. The cumbersome denominatorf8, which
doesnot appear in the restricted case, emerges when
eliminatesvx(z) from Eq. ~19! in order to derive the Sturm
Liouville equation~24!. In this way one arrives at Eq.~23!,
whereas in the restricted case (ky50) the condition~20! of
divergence-freeness yields an immediate connection betw
vx andvz8 . Here lies the reason why an asymptotic theory
upper bounds for the full Couette problem, paralleling t
one developed for the restricted case in Ref.@22#, seems to
be out of reach. Nevertheless, the model problem has le
the identification of the test profiles~33! as profiles that will
provide the best possible bounds onc« in the limit of large
Reynolds numbers.

In Fig. 4 we visualize a generic representative of the p
file family ~33!. The profile functional~13!, which becomes a
function of d, p, andn when applied to the class~33!, now
reads

D$f%5F1

2

n2

~2n21!d
21G~12p!2[D~d,p,n!.

By constructing the lower envelope of all graphs of the ty
shown in Fig. 1, which are produced in the (Re,c«) plane by
the individual test profiles, we are able to compute the o
mal upper bound onc« obtainable from the profiles~33! for
Reynolds numbers up to Re'106. Moreover, from the opti-
mized profiles we can extract the asymptotic scaling of
profile parameters.

FIG. 3. Behavior off (2)(z)/f8(z) in the vicinity of z5d for
d50.002 andn54. From top to bottom: graphs that result whenp
is successively diminished by factors of 1/10 fromp50.1 to p
51026; cf. Fig. 2.
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6780 56NICODEMUS, GROSSMANN, AND HOLTHAUS
In Fig. 5 we report our findings for the optimized upp
boundc«(Re) onc«(Re). Remarkably, this variational boun
separateswith a sharp kinkfrom the lower boundc«(Re)
5Re21 at the energy stability limit, which is located at

ReES582.650 148 87~1!,

c«~ReES!5ReES
2150.012 099 191 758~2!. ~35!

~The numbers in parentheses denote the uncertainty of
last digit.! Up to ReESboth bounds coincide; see Eq.~7!. The
kink of the upper bound at ReES is no artifact caused by ou
particular choice of test profiles~33!: Even though some nu
merical improvement of the upper boundc« is possible in the
regime of intermediate Re~see below!, one will still obtain a

FIG. 4. Test profilef(z) as given by Eq.~33!, for a generic
parameter set~n54, d50.3, andp50.1!.

FIG. 5. Bounds onc« for the plane Couette flow. Points deno
the variational upper boundc«(Re) computed numerically with the
test profiles~33!; the solid line on the left is the lower boun
c«(Re)5Re21. The asymptotic value of the upper boun
limRe→`c«(Re)50.010 87(1) lies slightly above, but within the un
certainty span of Busse’s asymptotic result~8!. The inset depicts the
improvement obtained by presuming that the wave vector minim
ing R0$f%(k) has a vanishing component in the streamwise dir
tion. Solid line: lower boundc«(Re); dashed line: same uppe
bound as in the main figure; points: improvement of the bou
obtained by admitting the parameter valuen53.
he

bound thatincreasesfor Reynolds numbers slightly abov
ReES. This behavior is related to the singularity of the ba
ance parametera at ReES @20,22# and finds its explanation in
a change of the role of the optimal background flow. Belo
ReES the optimal background flow coincides with the lamin
flow, that is, with a stationary solution to the Navier-Stok
equations, but above ReES this is no longer the case. There
fore, the deviationsv(x,t) from the background flow below
and above ReES have a different character. For Re,ReES
these deviations are fluctuations around the physically r
ized laminar flow. Since they will decay at least expone
tially in time @23,24#, they yield no contribution to«. For
Re.ReES the deviations can no longer be regarded as ‘‘flu
tuations’’ in the usual sense and they contribute to«.

The apparent slight nonsmoothness of our boundc« at
Re'200, on the other hand, indeed is an artifact; it is cau
by the restriction ofn to values no less than 4. We hav
found empirically that the componentkx of the wave vector
minimizing R0$f%(k) always vanishes. With this knowl
edge, the system~28! can be simplified: The 20-componen
complex system is converted into a 20-component real o
As a consequence, the parameter valuen53 becomes admis
sible, which results in a noticeable improvement of the up
bound in the intermediate range ReES,Re,700, as shown in
the inset of Fig. 5.

For Reynolds numbers around 740 the upper bound
hibits a pronounced minimum and then ascends to
asymptotic value

lim
Re→`

c«~Re!50.010 87~1!. ~36!

This value lies slightly above, but within the uncertain
span of, Busse’s asymptotic result~8!. Thus our variational
bound possesses the same asymptotic Re0 scaling as the
bound provided by the optimum theory. In Appendix B w
treat the variational principlewithout taking into account the
condition “•V50 in Eqs.~14!. This toy problem provides
an illustrative example for our methods and allows a dir
comparison of variational results obtained numerically w
the help of the profiles~33! to the corresponding results de
rived by Howard@8,11# in the framework of the Howard-
Busse theory. Our numerical value for the asymptotic bou
pertaining to this simplified case, limRe→`c«(Re)'0.070 71,
differs from Howard’s analytical value 9/128'0.070 31 by
merely 0.6%, even though our variational profiles are s
cifically adapted to the full problem andnot to this simplified
case.

A key for understanding the overall behavior of the var
tional upper bound lies in the expressionsR0$f%~k!, consid-
ered for fixed profilef as functions of the two-dimensiona
wave vectork. We have already mentioned the observati
that for each considered test profile the absolute minimum
R0$f%(k) was attained forkx50. This finding may seem
surprising at first glance, but becomes at least plausible w
the help of the following argument. If one neglects the co
dition “•V50 in Eqs.~14!, the minimizingk vector is the
zero vector, as shown in Appendix B. Taking into accou
“•V50 then enforces that the minimizingk becomes non-

-
-

d
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zero. But since there is no characteristic length scale in
streamwise direction, the minimizing kx remains zero.

There is a further feature that strongly influences the
dependence of the optimized profile parameters and the
ing behavior of the resulting upper boundc«(Re): The single
minimizing wave numberky that characterizes the varia
tional solution at comparatively low Re bifurcates to a p
of minimizing wave numbersky,1 and ky,2 at the Reynolds
number

ReB'460. ~37!

The variational principle possesses the intriguing prope
that above ReB both corresponding minimal values o
R0$f%(k), R1 andR2 , are locked to exactly the same valu
i.e., two eigenvalues of the eigenvalue problem~14! pass
through zero simultaneously.This degeneracy reflects th
fact that, physically speaking, the sensitivity of the var
tional problem to the behavior of the profiles in the bound
layers separates from the sensitivity to the profiles in
interior. A fairly precise mathematical formulation of th
statement can be given for the Couette problem with
spanwise degrees of freedom@22#.

The consequences of this bifurcation for the upper bo
on c« are dramatic:Its approximateRe21/4 dependence tha
prevails forRe<ReB changes to the asymptoticRe0 behav-
ior, while the bound passes through its global minimum

c« min'0.009 70 at Remin'740. ~38!

In order to convey some idea for the way the variatio
principle works, we drawR0$f%(k) as function of both com-
ponents ofk, for the optimized profiles corresponding to th
Reynolds numbers ReES @Fig. 6; cf. Eq.~35!# and Remin @Fig.
7; cf. Eq.~38!#, respectively. Figure 8 depicts the minimizin
values ofky that belong to the variational bound displayed
Fig. 5. Whereas the upperky branch scales proportionally t
Re in the limit of large Re, the lower branch approache
constant value. This value ispreciselythe one that also cor
responds to the energy stability limit:

lim
Re→`

ky,1

2p
5

kES

2p
'0.4960.

FIG. 6. Three-dimensional surface plot visualizing thek depen-
dence ofR0$f%(k) for the laminar profile, which is the optimize
profile for Reynolds numbers up to the energy stability limit ReES.
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This finding is rather unexpected since we have the sim
laminar profile at the energy stability limit and seeming
entirely different nonlinear profiles with an almost flat int
rior part in the asymptotic regime. However, the restrict
model problem has shown that this interior part of t
asymptotic profiles can be related to the laminar profile,
that the asymptotic identity ofky,1 and kES can be proven
analytically by mapping the corresponding eigenvalue pr
lems to each other@22#.

It is now of considerable mathematical and physical int
est to investigate the Re dependence of the optimized pr
parameters. We have to keep in mind that the backgro
flow U(x)5Uf(z) x̂ is, by construction,not a horizontally
averaged mean flow. On the other hand, the optimal profi
f invite comparison with physically realized flow profile
@19#, even though such a comparison remains specula
Figure 9 shows the metamorphosis of the optimal profi
with increasing Reynolds number. By a close inspection
the data underlying this figure, we can clearly distingu
four different regimes.

FIG. 7. Three-dimensional surface plot visualizing thek depen-
dence ofR0$f%(k) for the optimized profile belonging to the abso
lute minimum of the upper bound onc« at Re5Remin'740. Note
the appearance of two distinct minima on theky axis. Since the
profile results from the variational principle, both minima have t
same value.

FIG. 8. Minimizing wave number~s! ky corresponding to the
upper bound onc« displayed in Fig. 5.
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6782 56NICODEMUS, GROSSMANN, AND HOLTHAUS
~i! For ReES<Re<Re1'160,a deformation of the laminar
profile takes place. Whereas the thicknessd of the boundary
layers remains fixed at 0.5 and the polynomial ordern of the
boundary segments remains at the smallest possible val
the profile’s slopep in the interior decreases from 1 to a
most the limiting value 0. In this regime the upper boundc«

reaches its maximum and starts to descend.
~ii ! The following regime Re1<Re<Re2'670 is charac-

terized by thedevelopment of boundary layers.The param-
eter d decreases to its minimal value of about 0.14, withn
remaining fixed at 3, while the slopep increases again. In
this regime the bifurcation of the minimizingky occurs,
which alters the previous approximate Re21/4 behavior of the
upper bound.

~iii ! In the next regime Re2<Re<Re3'1845 we observe a
dramatic change of the shape of the optimized profil
boundary segments. The parametern, characterizing the
shape of these segments by means of their polynomial or
increases from the smallest possible valuen53 to n534,
thus steepening the profiles in the immediate vicinity of ea
boundary, thereby effectively generating new internal bou
ary layers within the original boundary layers. As a con
quence of thisstructural reorganization of the boundary lay
ers, the entire boundary segments, the extensions of wh
are quantified byd, start to reach deeper and deeper into
bulk and finally join again,d taking on its maximal value
0.5. In this regime, the upper bound passes through its m
mum @see Eq.~38!# and then changes the sign of its curv
ture.

~iv! For Re above Re3 we find simple scaling laws for the
optimal profile parameters. These scaling laws give rise
power-law change of the profilewith increasing Re: The
slope at the boundaryz50 ~or at z51! is given by

f8~0!;
n

2d
;a Re, ~39!

while the slope at the midpointz51/2 becomes

FIG. 9. Three-dimensional plot visualizing the metamorpho
of the optimized variational profiles with the increase of the R
nolds number. We have depicted the most important Re interva
a logarithmic scale, beginning with the energy stability limit ReES

and ending in the scaling regime Re.Re3.
3,

s

er,

h
-
-

h
e

i-

a

f8~ 1
2 !5p;b Re21, ~40!

with constantsa andb. Parallel to this power-law change o
the profile, the upper bound onc« ascends smoothly to its
asymptotic value.

If we had not been forced by practical numerical reaso
to constrain the shape parametern to values less than o
equal to 1000, we would have preserved the asymptotic1

scaling of n, while the parameterd would have remained
fixed at 0.5. In our numerics the optimaln becomes 1000 a
Re'51 880, and keepingn fixed atn51000 for even higher
Re instead of allowing it to increase further then forcesd to
decrease, as follows from Eq.~39!. The ensuing increase o
the asymptotic value of the upper boundc« ~compared to the
value that would be obtainable if one allowed arbitrar
large n! is quite small, as can be seen from the fact th
c«(51 880)50.010 832(1) differs merely by about 0.3%
from the asymptotic value~36!.

V. CONCLUSIONS

Figure 10 gives a synopsis of the rigorous upper bou
on the dimensionless rate of energy dissipation~6! in plane

s
-
n

FIG. 10. Comparison of bounds onc«(Re) for the plane Couette
flow. Solid slanted straight line: lower boundc«(Re)5Re21. Top-
most horizontal solid line: upper bound obtained by Doering a
Constantin in Refs.@14,17# with the help of an overrestrictive pro
file constraint and piecewise linear profiles;c«(Re)'0.088 for Re
.11.32. Dash-dotted line: improved bound onc«(Re) derived by
Gebhardtet al. in Ref. @18# from the analytical solution of the
Doering-Constantin principle with the overrestrictive constrai
c«(Re)'0.079 for Re.16.98. Long-dashed line: further improve
ment due to the introduction of the balance parameter in Ref.@20#;
c«(Re)→0.066. This bound is still calculated analytically utilizin
the overrestrictive profile constraint. Heavy dots: upper bound
the plane Couette flow obtained in this work from the variation
principle ~12! with the actual spectral constraint~14! ~cf. Fig. 5!;
c«(Re)→0.010 87(1). The variational profiles are given by Eq
~33!, including n53 as an admissible parameter. Joining dash
line: asymptotic upper bound~8! derived by Busse in Refs.@9,10#;
c«(Re)→0.010(1). The shaded area denotes the estimated unc
tainty of this bound. Triangles: experimental dissipation rates
the plane Couette flow measured by Reichardt@12#. Circles: experi-
mental dissipation rates for the Taylor-Couette system with sm
gap as measured by Lathrop, Fineberg, and Swinney@13#.
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Couette flow that have been found so far. The topmost th
lines indicate results derived with the help of an overrest
tive profile constraint@17,18,20# stemming from functional
estimates. This sharpened constraint oversatisfies the a
spectral constraint~14! and thus leads to bounds exceedi
the asymptotic Busse bound~8! by factors of 8.8, 7.9, or 6.6
respectively. Only if the spectral constraint is prope
implemented and evaluated, as done in this work, can
obtain a rigorous bound that practically coincides with t
Busse bound in the asymptotic regime, thereby confirm
both Busse’s pioneering work@9,10# and Kerswell’s recent
analysis@19#.

However, it must be clearly recognized that much mo
has been achieved than the confirmation of a 25-year
difficult result. Now a variational principle is available th
not only produces asymptotic bounds of high quality b
yields rigorous bounds of the same quality in the entire ra
from low to asymptotically high Reynolds numbers. For t
plane Couette system discussed in this paper, the bo
shows a remarkable structure, notably a pronounced m
mum followed by a Re range between 1000 and 1800
which the bound’s curvature changes its sign. This occur
about those Reynolds numbers where typical labora
shear flows start to become turbulent. It is tempting to spe
late about this coincidence, but such considerations are
yond the scope of the present work.

Of considerable interest is the mechanism that determ
the variational upper bound. As depicted in Fig. 8, the mi
mizing wave numberky bifurcates at ReB'460, giving rise
to one minimizingky branch that asymptotically approach
a constant and another one that scales linearly with Re. S
both corresponding minima determine the solutions to
variational principle by taking on the same value, as
scribed in Sec. IV, there are two characteristic lengths
enter into the solution, one scaling with Re0 and the other
with Re21. The analysis of the restricted Couette proble
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@22# has led to the conclusion that the first Re-independ
minimum reflects the response of the variational principle
the optimized profiles solely in the interior of the fluid laye
whereas the second minimum reflects the response to s
the profiles’ boundary segments. Thus the two lengths en
ing the variational solutions can be identified as basically~i!
the extension of the interior flat part of the optimized profi
and ~ii ! the effective width of its boundary segments. It
structural insight of this kind that will be required for th
formulation of a more refined variational principle that mig
ultimately allow one to decide whether there are correctio
to classical scaling.

For the moment, the comparison of our variational bou
with the experimental data shown in Fig. 10 demands so
modesty. The bound clearly is far from being sharp; the d
ference between the variational boundc« and the corre-
sponding data measured by Reichardt@12# for the plane Cou-
ette flow or by Lathrop, Fineberg, and Swinney@13# for the
small-gap Taylor-Couette system still spans an order of m
nitude. In short, one important step has been made, but t
is still a long way to go.
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APPENDIX A: COMPOUND MATRIX METHOD
FOR THE SIXTH-ORDER STURM-LIOUVILLE PROBLEM

Keeping in mind that we are interested not in the calc
lation of the entire spectrum furnished by the Stur
Liouville eigenvalue problem~24! and~25! but in the deter-
mination of that value ofR where the smallest eigenvalu
passes through zero, we can setl50 right from the outset.
We thus obtain the sixth-order Sturm-Liouville problem
vz
~6!22

f~2!

f8
vz

~5!2H 3k21
f~3!

f8
22S f~2!

f8
D 2J vz

~4!1H 4k2
f~2!

f8
1 ikxRf8J vz

~3!

1H 3k412k2Ff~3!

f8
22S f~2!

f8
D 2G1 i

kx

2
Rf~2!J vz

~2!2H 2k4
f~2!

f8
1 ikxRFk2f82f~3!1

~f2!2

f8 G J vz8

2H k61k4Ff~3!

f8
22S f~2!

f8
D 2G2

1

4
~kyRf8!21 i

kx

2
RFk2f~2!2f~4!13

f~3!f~2!

f8
22

~f~2!!3

~f8!2 G J vz50, ~A1!

together with the boundary conditions

vz~z!uz50,150, vz8~z!uz50,150, Fvz
~2!~z!2

1

2k2 vz
~4!~z!GU

z50,1

50. ~A2!

The eigenvalues of this problem are those values ofR where both Eqs.~A1! and ~A2! are satisfied.
In order to integrate Eq.~A1!, one has to pose suitable initial conditions at one of the boundaries, let us sayz50. We define

the six-vectors

Vz~z![S vz~z!,vz8~z!,vz
~2!~z!2

1

2k2 vz
~4!~z!,vz

~3!~z!,vz
~4!~z!,vz

~5!~z! D T



n
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and consider the three linearly independent fundamental solutionsVz,1(z), Vz,2(z), andVz,3(z) to Eq. ~A1! that emerge from
the initial values

Vz,1~0!5~0,0,0,1,0,0!T, Vz,2~0!5~0,0,0,0,1,0!T, Vz,3~0!5~0,0,0,0,0,1!T, ~A3!

respectively. By construction, each of these three solutions satisfies the conditions~A2! at z50 and the most general solutio
obeying these one-sided BCs is just a superposition of them. The solution that also satisfies the conditions~A2! at the other
boundaryz51 is then singled out by the requirement

DetS vz,1~1! vz,2~1! vz,3~1!

vz,18 ~1! vz,28 ~1! vz,38 ~1!

vz,1
~2!~1!2

1

2k2 vz,1
~4!~1! vz,2

~2!~1!2
1

2k2 vz,2
~4!~1! vz,3

~2!~1!2
1

2k2 vz,3
~4!~1!

D 50.
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But from the numerical point of view the evaluation of th
determinant, which in most cases necessitates the subtra
of large numbers of almost equal magnitude from each ot
is rather inconvenient. An efficient and numerically stab
way to bypass this difficulty has become known ascom-
pound matrix methodin the literature; see, e.g., Ref.@27# for
an introduction to the method or Ref.@22# for applications to
the restricted Couette problem. To apply this technique to
full Couette problem studied in this paper, we define a vec
y(z)5„y1(z),...,y20(z)…T, the 20 components of which ar
proportional to the 333 minors of the 633 solution matrix
that containsVz,1 as its first,Vz,2 as its second, andVz,3 as its
third column:

y1[k9(
s

sgn~s!vz,s~1!vz,s~2!8 S vz,s~3!
~2! 2

1

2k2 vz,s~3!
~4! D ,

]

y20[(
s

sgn~s!vz,s~1!
~3! vz,s~2!

~4! vz,s~3!
~5! . ~A4!

The summations involve all permutationss of 1,2,3. The
powers of k multiplying each sum are determined in th
following way. The expression definingy20 carries the high-
est total number of derivatives, namely, 12; this expressio
multiplied by k0. Descending in the index from 20 to 1, th
number of derivatives is successively diminished; each
rivative less gives a factor ofk more. This guarantees tw
things: First, the initial conditions~29! are independent ofk,
and second, all components have the same order of ma
tude.

From Eq. ~A1! one then obtains a system of first-ord
equations that already closely resembles the system~28! that
we have studied numerically, with the only difference that
each componenti ( i 51, . . . ,20) theterm23kyi appearing
in Eqs. ~28! is still missing. It is obvious that the initia
conditions~29! and the boundary condition~30! follow di-
rectly from Eqs.~A3! and the definitions~A4!.

This term23kyi in the i th component of the system is o
particular importance. The restricted Couette problem
taught us the lesson@22# that the system of first-order equa
tions directly provided by the compound matrix method
not suited for numerical analysis in the high-Re regim
where one has to monitor large values ofk. One rather has to
rescale each component of the system by a common e
ion
r,

e
r

is

e-

ni-

s

,

o-

nential damping factor. The reason for this rescaling is
lated to the fact that the optimized profiles tend to beco
flat in the interior of the fluid layer when Re becomes hig
while the extension of the boundary segments, where
profiles have to bend in order to meet the boundary con
tions f(0)50 andf(1)51, tends to zero. This motivate
one to neglect the profiles’ boundary conditions altoget
and to consider Eq.~A1! with a linear profilef(z)5cz, so
thatf8 becomes equal to the constantc and all higher profile
derivatives vanish. In the limitc→0 one then arrives at

vz
~6!23k2vz

~4!13k4vz
~2!2k6vz50, ~A5!

with the BCs~A2!. Applying the compound matrix techniqu
as sketched above to this boundary-value problem, one fi
a 20-component system of first-order equations as in the
of a generalf, but now with constant coefficients. This sy
tem can be solved analytically by standard means, but
accurate numerical solution for largek’s will be possible
only if the solutions do not grow~or decrease! exponentially.
Thus the intended numerical approach forces us to res
the system such that the largest eigenvalue of the resc
system’s coefficient matrix is exactly equal to zero. It tur
out to be possible to determine the Jordan normal form of
20320 matrix resulting from Eq.~A5! analytically; the larg-
est eigenvalue is nondegenerate and equals 3k. Hence the
transformation

ỹ1~z![y1~z!e23kz, . . . , ỹ20~z![y20~z!e23kz ~A6!

has the desired effect. Applying the very same transform
tion also to the system given by the compound mat
method for the case of a general candidate profilef ~and
finally omitting the tilde!, changes that system merely b
adding23kyi to the i th component and thus produces o
system ~28!. We emphasize that the identification of th
proper exponential scaling factor and the actual scaling tra
formation~A6! is crucial for obtaining equations that rema
numerically stable even in the regime of asymptotically hi
Reynolds numbers.

A striking feature found in the study of the restricted Co
ette problem, where the system corresponding to Eqs.~28!
consists of merely six equations@22#, is the possibility to
reduce thatcomplexsix-component system to areal six-
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component system, thereby halving the number of equati
This simplification could be obtained from taking Im@y1(z)#
50 for all z. Even though we have strong numerical e
dence that the imaginary part of the componenty1(z) van-
ishes also in the present case, we did not succeed in der
a reduced system for arbitraryf. Hence we make a virtue o
necessity and keep the full system~28!, but exploit our in-
sight for controlling the accuracy of the numerical solutio
by monitoring the magnitude of Im@y1(z)#.

APPENDIX B: NEGLECTING “–V50

In this appendix we study the variational problem for e
ergy dissipation in plane Couette flow without requiring th
the solutions V~x! to the eigenvalue problem~14! be
divergence-free. Then the solutions to this eigenvalue pr
lem are determined in an enlarged space of functions, so
the bound obtainable for this simplified problem natura
cannot be as good as the one reported in Sec. IV. Howe
the distinct value of this toy model lies in two points. Firs
we can illustrate, in condensed form, the principles of b
the background flow method itself and the use of the co
pound matrix technique. Second, this model allows an
mediate quantitative comparison of our numerically cal
lated, asymptotic dissipation bound with the correspond
value provided by the Howard-Busse theory.

To begin with, the equations~17!–~20! for the spectral
constraint’s eigenvalue problem simplify enormously wh
the condition“•V50 is skipped:

lvx522~]z
22k2!vx1Rf8vz , ~B1!

lvy522~]z
22k2!vy , ~B2!

lvz522~]z
22k2!vz1Rf8vx . ~B3!

Equation~B2! separates from the others and we immediat
obtain a solution that is compatible with the BCs~21! for
eachl and k, namely,vy(z)50. Introducing the functions
v(z)[vx(z)2vz(z) andw(z)[vx(z)1vz(z), Eqs.~B1! and
~B3! transform into

lv522~]z
22k2!v2Rf8v,

lw522~]z
22k2!w1Rf8w;

the BCs readv(0)5w(0)50 andv(1)5w(1)50.
We now assume that the profile functionsf(z) satisfy, in

addition to the conditions posed in Eqs.~11!, also the addi-
tional monotony condition

f8~z!>0 for 0<z<1. ~B4!

Our test profiles~33! obviously comply with this plausible
requirement. Hence, if the componentw(z) does not vanish
identically, the positive definiteness of2]z

2 will enforce l
.0 for positive R. Consequently, forl50 and R.0 we
have w(z)50 and are left with the second-order Sturm
Liouville boundary-value problem

v92~k22 1
2 Rf8!v50, v~0!5v~1!50. ~B5!
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In exact analogy to the full problem, the main task posed
the spectral constraint is to calculate for givenf and k>0
the smallestR value R0$f%(k) where Eq.~B5! is fulfilled
and then to minimize over allk in order to extractRc$f%.
But now the second-order differential equation~B5! shows
that theminimizing k value kc$f% equals zerofor eachf(z).
In the final step, the optimal upper bound onc«(Re) follows
from the inequality~16!.

The laminar profilef(z)5z yields the ‘‘energy stability
limit’’ for our toy problem,

ReES52p2'19.74, c«~ReES!51/2p2'0.050 66.

In order to computeRc$f% for nonlaminar profiles we now
rewrite the second-order equation~B5! as a system of first-
order equations by defining the vectory(z)
[„v(z),v8(z)…T. In this way we get

y185y2 , y2852 1
2 Rf8y1 , ~B6!

where we have setk50; initial conditions atz50 and BCs
at z51 are given by

y~0!5~0,1!T, y1~1!50. ~B7!

This reformulation of the Sturm-Liouville problem~B5! cor-
responds precisely to the reformulation provided by the co
pound matrix method. If one compares this simple bounda
value problem~B6! and~B7! to the corresponding boundary
value problem~28!–~30!, one gets a vivid impression of th
complications introduced into the variational principle by t
condition“•V50.

Figure 11 shows the numerically computed variation
upper bound onc«(Re) that results from the inequality~12!
when“•V50 is neglected, i.e., when the spectral constra
is translated into Eqs.~B6! and ~B7!, and the previous tes
profiles~33! are employed. For simplicity, we have fixed th
parametern to the valuen52. Interestingly, this bound ex
hibits the same shape as the one that had been found an
cally @20# when another overrestrictive profile constrai
stemming from functional estimates had been used instea

FIG. 11. Bounds onc«(Re) for the plane Couette flow obtaine
by neglecting the condition“•V50 in the eigenvalue equation
~14!. Points denote the variational upper boundc«(Re), computed
numerically from the test profiles~33! with fixed parametern52;
the solid line on the left is the lower boundc«(Re)5Re21.
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the actual spectral constraint; that bound is indicated by
long-dashed line in Fig. 10. The best possible asympt
upper boundc«(Re) for the toy model without“•V50 can
be found for a noninteger value ofn, namely,n`'3.40:

lim
Re→`

c«~Re!'0.070 71.

This value has to be compared to the bound calculated
lytically by Howard @8,11#, also without accounting for
divergence-freeness:
—
.
ol.

et
e
ic

a-

lim
Re→`

c«~Re!5
9

128
'0.070 31.

The work of Kerswell@19# suggests that both the Howard
Busse theory and the background flow method, when fu
exhausted, give the same asymptotic upper bound. E
though we have deliberately used test profiles that arenot
specifically adapted to the present toy model, we ha
missed Howard’s bound by merely 0.57%.
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