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Variational bound on energy dissipation in plane Couette flow
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We present numerical solutions to the extended Doering-Constantin variational principle for upper bounds
on the energy dissipation rate in turbulent plane Couette flow. Using the compound matrix technique in order
to reformulate this principle’s spectral constraint, we derive a system of equations that is amenable to numeri-
cal treatment in the entire range from low to asymptotically high Reynolds numbers. Our variational bound
exhibits a minimum at intermediate Reynolds numbers and reproduces the Busse bound in the asymptotic
regime. As a consequence of a bifurcation of the minimizing wave numbers, there exist two length scales that
determine the optimal upper bound: the effective width of the variational profiles’ boundary segments and the
extension of their flat interior parfS1063-651X%97)07712-X]

PACS numbgs): 47.27.Nz, 03.40.Gc, 47.20.Ft

I. INTRODUCTION mapping the extended Doering-Constantin principle to an-
other variational principle that also occurs in Busse’s theory
Can one derive upper bounds on the rate of energy dissend then applying Busse’s method of solution. However, as
pation in turbulent shear flows that are both mathematicalllemphasized by Kerswell himsglf9], there is still no math-
rigorous and physically meaningful, i.e., “sharp”? This ematical proof that Busse’s solution is really extremal, al-
guestion is of enormous conceptual importance in the theorthough this is generally believed to be the case. Moreover,
of turbulence, since the energy dissipation rate is the centrahe Busse bound pertains to the limit of asymptotically high
object in classical turbulence theorids-5]|, and its behavior Reynolds numbers only. Hence what is needed is a solution
at high Reynolds numbers may reveal whether there are ino the extended Doering-Constantin principle tiiatfully
termittency corrections to classical scalif§y7]. Since full  exhausts this principlgii) spans the entire range from low to
numerical simulations of shear flows with Reynolds numbersisymptotically high Reynolds numbers, afiid) is logically
of the order of 18 or above are out of reach, and will remain independent from Busse’s solution.
so in the foreseeable future, rigorous estimates of the dissi- In this paper we present a full-fledged numerical analysis
pation rate derived directly from the Navier-Stokes equation®f the improved Doering-Constantin variational principle for
are one of the few tools left to the theorist for approachingthe plane Couette flow that meets these requirements. The
such questions. goal here is not merely to derive the best possible bound, but
The idea of bounding the rate of energy dissipation withwe also wish to explore the working principles of the new
the help of rigorous inequalities, rather than trying to solvemethod. Even if statements concerning the existence of non-
the equations of motion under plausible but essentially unelassical scaling remain out of reach at present, the potential
controlled approximations, became popular in the earlypower of the novel variational principle lies in its great con-
1970s, with the formulation and further exploration of the ceptual clarity. Once thoroughly understood, it might serve
Howard-Busse theory8]. In particular, Buss¢9—-11] was as a germ for the formulation of a still more advanced prin-
able to derive an asymptotic upper bound on energy dissipaiple that could actually allow one to attack the scaling ques-
tion in plane Couette flow that is in accordance with classications.
theories, but lies roughly an order of magnitude above ex- We organize our material as follows. After having stated
perimentally measured dafa2,13. the variational principle in Sec. Il, Sec. 1l will be devoted to
After this state of affairs had remained unchanged forthe resolution of the most demanding technical difficulty, the
about 25 years, Doering and Constantin put forth a differenimplementation of the principle’'s spectral constraint. It is
variational principle for computing quantities characterizingthis constraint that seems to have hindered previous numeri-
turbulent flows[14-16. Whereas the early applications of cal work [21] to reach the asymptotic regime. Our results
this principle to the plane Couette probléid,17,18 did not  will then be described in Sec. IV. Section V offers a con-
exhaust the principle and produced bounds on the dissipatiatiuding discussion. Some important technical details con-
rate that could not compete with Busse’s, subsequent analyerning the derivation of the system of differential equations
sis by Kerswell[19] revealed that the Doering-Constantin actually used in the numerical computations can be found in
principle, after being extended along the lines worked out inAppendix A, while Appendix B contains a brief but instruc-
Ref. [20], actually reproduces the Busse bound in thetive example that illustrates the key points of our method and
asymptotic regime. Kerswell arrived at this conclusion byunderlines its accuracy, without too much technical burden.
Since the numerical work is fairly involved, it would
hardly have been possible to carry out the entire investiga-
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the following, which has been treated in detail in R&2] lim c.(Re)=<0.010. 8
and shows several features that will reappear here in the Re—o

context of the unrestricted problem.
Note that the right-hand side of this inequality does not de-

Il. VARIATIONAL PRINCIPLE pend on the Reynolds number, so that this bound is in accor-
dance with classical turbulence theorjgs-5]. [For a discus-
We consider a layer of an incompressible fluid with kine-sion of the connection between the Re dependence(éfe)
matic viscosityr that is confined between two infinitely ex- and possible intermittency corrections see Ré¥.]
tended, parallel rigid plates separated by a distdancéhe The background flow approach can likewise be consid-
lower plate, coinciding with the plane=0 of a Cartesian ered as a generalization of energy stability theory, but it has
coordinate system, is fixed, whereas the upper plate=dt  a distinctly different twist. Instead of decomposing the ve-

is sheared with constant velocity in the positivex direc- locity field u into a z-dependent, plane-averaged mean flow
tion. The dynamics of the fluid’s velocity field(x,t) are  and the fluctuations around this flow, as Busse did in his
determined by the equations optimum theory, Doering and Constantiti’7] take up an

idea by Hopf[26] and write
du+u-Vu+Vp=vAu (Navier-Stokes equatiohs

(1) u(x,t)=U(x) +Vv(x,t). 9
V-u=0 (incompressibility, 2 Now the stationary and divergence-free auxiliary fieltk),
dubbed the background flow, has to carry the physical BCs,
u(x,y,0)=0, u(x,y,h,t)=Ux namely,U(x,y,0)=0, U(x,y,h)=UX, andU(x) is periodic
in the x andy directions. However, apart from these fairly
(no-slip boundary conditions 3 mild specifications, the background flow remains completely

arbitrary. Hence this decompositié®) serves as the starting
herep denotes the kinematic pressure and the unit vector ~ point of a variational principl¢14]: Plug it into expression
in thex direction. In addition, in both the andy directions  (4) for the energy dissipation rate, get rid of the deviations
periodic boundary condition®Cs) are imposed om andp.  V(x,t) with the help of both the equations of moti¢h—(3)
The time-averaged rate of dissipated energy per mass &nd rigorous inequalities that bound the dissipation rate from
given by above, and then adjust the background flow such that this
To carry out this program, we restrict ourselves to back-
]' (4) ground flows that are given by a merely height-dependent
where () is the periodicity volume. Our aim is to derive a €tt€ geometry. That is, we admit only background flows of
mathematically rigorous upper bound on the long-time limitthe form

, > , (¢9jUi)2

ihj=xy

upper bound becomes as low as possible.
1 (7 v
eT= T fo dt[a f0d3x
profile ¢(¢), which should reflect the symmetry of the Cou-

e ofer, U0=U (D)% 10
e=1m er. ®  ith
Equivalently, we consider the nondimensionalized dissipa- $(0)=0, ¢(1)=1, ¢(H)=1-¢(1-¢), 19
tion rate
where {=z/h is the dimensionless coordinate in cross-
e stream direction. The resulting inequality that bounds the
c.(Re= TR (6)  dissipation rate then readi20]
2
where Re=Uh/v is the Reynolds number. For calculating the c.(Re<|1+ & D{¢}|Re™ L, (12)
bound we will employ theébackground flow methods re- 4(a-1)

cently put forth by Doering and Constanfib4—17 and de-

velogeg further ir)1/ Reﬁgzo]? i L wherea>1 is a dimensionless balance parameter Rfigh}
It is known [14] that the rate of energy dissipated by the denotes the profile functional

laminar flow u(x,t)=(Uz/h)X provides a rigoroudower 1

boundc, on c, for all Re, namely,cs(ReP&(Re)ERefl. D{¢}EJ d[¢'(0)]%2—1. (13)

Moreover, energy stability theof23,24] guarantees that the 0

laminar flow is the only possible stable flow at least up to the

energy stability limit Res. Hence we have the exact identity The bound on the dissipation rate provided by the right-hand
side of the inequality12) can be minimized by varying both

c.(Re=Re ! for Re<Re-5~82.65. (7)  the profile¢ and the balance parameter However, there is
a substantial technical difficultyThe inequality(12) is valid
From an early generalization of energy stability theory, theonly as long as the profile) satisfies a spectral constraint
optimum theory devised by Bus$8—11], one obtains an [14]. This spectral constraint demands that all eigenvalues
approximate asymptotic upper bouf&b] of the linear eigenvalue problem
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i for the stationary velocity fieldy/ be positive. Since the

| background flow already carries the physical boundary con-
[ ditions, V has to satisfy homogeneous BCs, thaMdhas to

! vanish on the material wallg() at z=0 andz=h and be

: periodic in thex andy directions. Note that the balance

| parametem enters into this eigenvalue problem through the
: rescaled Reynolds number
[

[

[

[

[

[

|

a

REa—1

Re. (15)

In effect, the spectral constraiiL4) restricts, for each
R Reynolds number, the combinations of profiles and balance
Re c parameters that are admissible to the variational principle
(12). The highly nontrivial task of evaluating this constraint
FIG. 1. Graph of an upper bound @ produced according to  consists in determining, for each candidate profilesepa-

0 2/h 1
0 IR,

Eq. (16) by the profile¢ shown in the inset. rately, that rescaled Reynolds numiemwhere the smallest
eigenvalue passes through zero. We will denote this number
0 0 1 asR.{¢} in the following.

Providedwe know how to comput® { ¢} (this task will

= —2h? "0 0 O
AV 2h°AV+Re V+VP, be taken up in the following sectigneach ¢ leads to a

100 rigorous upper bound on, in the interval 0<Re<R{¢}.
After optimization of the balance parameter, this bound
0=V-V, V(@©Q)=0 (14  adopts the fornj20]

[1+D{¢}]Re’ ! for 0<Re<3iR{¢}

Cos D{g}R:A¢}* |_ )
1+ A(R{$I-ReRe Re for ;R {d}<Re<R.{ ¢} . (16)
|
Figure 1 shows the graph of such an upper bound produced Av,=—2(32— kv, +Rep v, +p’, (19
by a generic profilep. When a suitable class of test profiles
has been selected, the lower envelope of all graphs stemming 0=ikyy+ikyvy+vs, (20)

from the individual profiles then is the optimal upper bound
on c.(Re) that can be obtained from this class, i.e., the soyt
lution to the variational principlé12) within this class.

k=IZHIZ.
I1l. EVALUATION OF THE SPECTRAL CONSTRAINT
We nondimensionalize the problem by choosing the gag N€ corresponding BCs for the functimiiz) read

width h as the unit of length. By virtue of the linearity of v(0)=v(1)=0. 21)

Egs. (14) and the homogeneous BCs imposed on the eigen-
vectorsV, it is not necessary to specify a scale of veIocnyIf k,=0 we encounter the model problem of a Couette flow

explicitly. For the sake of notational simplicity we denote all Without spanwise degrees of freedom. Since this restricted
nondimensionalized quantities by the same symbols as the roblem has already been studied in detail in R2g], we

dimension-carrying counterparts. For instance, the velocity .
field V(x) now is regarded as a dimensionless vector functior? nlé;?n?g t(:hzol?ﬁédaerkg&gr;g:e‘
of the dimensionless coordinatesy, andz. 9 P

Utilizing the periodic BCs, we start from the ansatz L=2(2—K2)+X\,

V(X)=v(z ei(kxx+kyy), P(x)=p(z ei(kx><+kyy)
x)=v(2) (x)=p(2) Egs.(17) and(18) together with Eq(20) yield
and transform the eigenvalue equati@hg) into the system

1 o
Noy=—2(2—k2)vy+Rep'v,+ikyp, 17 P= 1z [Loz+ikRe v, ]. (22)

Nvy=—2(d5—k?)v,+ikyp, (18 Hence Eq(17) can be put in the form
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1 2 ’ . ’ ¢(2)(Z)
vazkj [kde) vz+|kxﬁvz] (23 fl(Z)EZW,
and we finally obtain from Eq(19) a rather intricate equa- f,(2)=3K+ 2 (2 4 (d’(Z)(Z))Z
tion for v ,(2): a8 k ¢'(z) k\ ¢'(2))"
(2) 1 1 (2) 2
252~ kz)vz—“d;—' L(E=K)} %(A=¢"2) -z #YD* 2 [qiﬁ%))]
¢ _[#?)\? , 1 1 3 $3(2)¢2(2)
—2[7—2(7 E(ﬂg—kz)vz-l-(kquﬁ )20, gz(z)zﬂ ¢(2)(Z)_W ¢(4)(Z)+W%
2 3) (2)\ 2
+ikXR¢’(2£v;+—,£vz+4 ¢——(¢—) v _1P@P
¢ ¢\ é k¥ T’ (217"
¢(4) ¢(3)¢(2) (¢(2)>3 ]
2| ———3——+2| ——| |v,{ =0, 24 1632 2 (¢P(2))* 1
i T B e L) L P

where we rely on the assumption that(z) does not vanish @7
for all z in the interval[0,1]. The corresponding BCs far,  The compound matrix technique outlined in Appendix A
are given by then yields the following system of 20 ordinary, first-order
complex differential equations:
VA2 201=0, 01(2)]=01=0, L(F2—k*)v4(2)],=0,=0.
(25 y1=K[=3y1+Y>— 3 Ya— 7 Yel,

Equations (24) and (25 constitute a sixth-order Sturm-
Liouville eigenvalue problem. If one succeeds in solving this
problem, that is, in computing an eigenvaluand its eigen-
functionv™(z) for some fixed profilep, wave numbers,
andk,, and a rescaled Reynolds numb®yr then one can yLr3 1
determine the associated componenf¥(z) and v{M(2), Ya=Klz 3= 3Vaty7s+ 2 Yaolt fal = 2y2+yal = oy
together withp®™(z), from Egs. (23), (18), and (22), so IR b1Yat ba(y1+ b Vo)

that an eigenvalue and a corresponding eigenvector P2 DAL 2 I3

(VM(x),PM(x)) of the original eigenvalue problerti4)

y5=K[—3y2+Y3+Ys— 3 Ysl,

y3=k[—3y3tys+ysl,

have been found. 5=k —3Ys+Ye+ 3 Yot yuil,
Since we cannot hope to find an analytical solution to this , L
formidable problem for each candidate profgewe have to Ye=K[—3YsTY7+Yst 3 Yiot Yi2l,

resort to a numerical treatment. This requires us to put the
Sturm-Liouville problem in a form that can actually be dealt y7=K[3 Y6—3y7+Yotyial+fil—y1—2ys+y7]
with on a computer. We defer the technical details of this

reformulation, which rely heavily on the so-called compound — iR [1Ys+ 3 drYst+01Y1l,
matrix method 27], to Appendix A and present only the final
equations here. Although these equations may appear, on a ye=K[—3yg+ Yo+ VYial,

cursory glance, even more cumbersome than the original

problem posed by Eqs(24) and (25), they have actp_ally V=K 2 Yg—3Yo+ Y10+ Yasl + F1l — Yo+ Yol +f2¥s

been found to be well suited for computing the “critical”

r_escgled Reynolds_ numbeRs{ ¢} for all situatiqns of prac- —iR [ o — Y5+ ¥ Yg)+01Val,

tical interest, as will be amply demonstrated in Sec. IV.
To begin with, we define the abbreviations yio=K[ = 3y10+ Y1el + F1l — Y3+ 2Ye+Yiol + FoYs

k_izz_’ RyEkTZzli 26) IR\ — ¢1Ys— b2Y6 T+ 91Y3l,

Ry

y11=K[ —3Y11+ Y12t 3 Y15t 7 Y17,
and the auxiliary functions
Y12=K[ = 3Y12+ Y1at YiaT 7 Yiel,
$1(2)=¢'(2),
Y13=K[3 V10— 3Y13t Y15~ 3 Vil + F1[ —2y11+Y1a]
¢'?(z)
ba(2)=—5 —, +FrY1HIR — d1y1— 7 d2Y12t 9ayil,
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yi=K[ —3y14t Y15t Y17, The price to pay for this simplification is a rather compli-
cated system of equations. But still, the spirit underlying
these equations is simple. Since we are not interested in the
full spectrum of the eigenvalue problefd4) [or, equiva-
lently, in that of the Sturm-Liouville probler24) and(25)],
but only in that valueR{¢} of R where the lowest eigen-
- value associated with some profilepasses through zero, we
Y16= K[ = 3Y16T V1ol + f1[2Y 14+ Y16l + f2Y 12+ FRyy3 were entitled to set =0 in the derivation of the systef@s).
; We then keep both the profi and the wave vectdt fixed

TR b1yt $2Y1ot 92l when solving the initial-value problen28) and (29 and
adjust only the paramet@&. The smallest value dR where
y1(1) vanishes then equals that valueFofvhere the small-
est eigenvalue. becomes zero, for this particulagr and k.

Y15= K[ 3 V14— 3Y15+Vie+Yis— 3 Yool + f1yast foyna

+ FRyy2+ IR #2(Y11— 3 Y14 +92Y2l,

Y17=K[—3Y17+ Y18~ 3 Ya0l,

Y1g=K[3 Y17~ 3Y1g+ V1ol + Fal Y11t Viel + FrYs We denote thiR as
+iR[ = 3 doY17T91Y11t UaYsl, Ro{ &} (k). (3D
Y19= K[ —3Y10+ Yool + f1[ Y121+ 2y 17+ V1ol + Fr Ve The desired numbeR {¢} then is identified as the global
Y minimum, taken over all wave vectors. Since the wave num-
+iR[ #1171+ 91Y12+ 92Y6]s bersk, and k, effectively enter into the syster(28) only
- 2
’ through their squarels? and ky, we have
Y20= = 3KY20t fal Y14t Y20l ~ foy17+ Fr Ve
. R{gt= min {Ro{o}(k)}. (32
FIR[ — ¢2y171+91Y14+ 92Ys]- (28 ke=0, k,>0

These equations have to be supplemented with the initiafhus the evaluation of the spectral constraint, i.e., the deter-
conditions required for their numerical integration from mination of the maximal rescaled Reynolds numBef¢}
z=0toz=1: up to which a given profilep remains an admissible test
. rofile for the variational principl€12), requires some labor.

Yao(0)=1, yi(0)=0 for i=1,...,19. (29 ?)ne first has to determinz for 'E)h¢tand ;representative set
of wave vectork the first zero ofy,(1) that occurs wheR
is increased from zero to positive numbers. This yields the
values(31). In a second step one has to locate the global
y;(1)=0. (30) minimum of all these values, which equds{ ¢}.

In addition, we merely have to satisfy the fairly simple
boundary condition

What matters here is precisely the replacement of the IV. RESULTS
rather troublesome, symmetric boundary conditi2 ac- '
companying the original Sturm-Liouville problem by the Now that we are in a position to evaluate the spectral
asymmetric boundary conditio®9) and (30), since these constraint(14) for an arbitrary profile¢(z), we have to
boundary conditions lend themselves to a standard shootingpecify a class of test profiles that is likely to exhaust the
method: Just integrate the systé®®) with the initial condi-  variational principle(12) or (16). Based on the analysis of
tions (29), monitor the resulting value of;(1), andadjust the restricted Couette problem, we propose the following
the system’s parameters such that this value becomes zeralass of variational profiles:

1 (1-p)+pz— 3 (1-p)(1—2/d" for 0<z<4
d(2)=1 3 (1—-p)+pz for 6<z<1l-6 (33
1 (1-p)+pz+ 3 (1-p)[1—-(1—-2)/86]" for 1—o<z=<1.

These profiles contain three independent parametéisthe  smallest value of allowed by this system is 4. In the case
boundary layer thicknes8 (0<§=<1/2), (ii) the slopep of = n=4 one encounters a discontinuity of the fourth derivative.
the profile in the interior (&cp=<1), and(iii) the polynomial However, as long as this discontinuity remains finite, it poses
ordern (n=4,5,...) of theboundary layer segments. By no problem for the numerical integration. For practical com-
construction, eachp is n—1 times continuously differen- putations we restrict the parameterto values less than or
tiable at the matching pointg=6 andz=1- 6. Since the equal to 1000.

right-hand side of the syster28) of differential equations At this point it needs to be emphasized that the variational
contains derivatives of the profile up to the fourth order, theparameten plays an important role for the numerical solu-
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FIG. 2. Behavior of¢?(z)/ ¢’ (z) in the interval 6<z=<0.015 FIG. 3. Behavior of$'?(z)/¢'(2) in the vicinity of z= & for

for 6=0.5 andn=1000. From left to right: graphs that result when §=0.002 andch=4. From top to bottom: graphs that result when
p is successively diminished by factors of 1/10 frgrs 0.1 top is successively diminished by factors of 1/10 frqms=0.1 to p
=106 =10"%; cf. Fig. 2.

tion of the variational principle. If this parameter was artifi- ascent from thénegativé value atz=0 to zero. In marked
cially kept fixed, that is, if one considered the profil@8)  contrast, in caséb) the same decrease pfproduces a rather
with a constant parameter=4, say, then one would inevi- sharp singularity in the vicinity oz=4. The expression
tably be confronted with serious divergences that are hard te- (3)(z)/ ¢’ (z) shows, qualitatively, the same behavior, but
deal with numerically and therefore would drastically reduceeven more pronounced. While the functions shown in Fig. 2
the maximal attainable Reynolds numbers. The formakre easy to handle, a singularity like the one that develops in
reasons for these difficulties lie in the expressionsFig. 3 would soon limit the accessible valuespfnd thus
#@(2)1¢'(2) and p®)(2)/ ¢’ (2), which enter into the sys- prevent us from reaching asymptotically high Reynolds num-
tem (28) through the auxiliary function§27). Namely, for  bers.

high Reynolds numbers the optimized profiles tend to be- At this point, an important difference between the full
come flat in the interior, so that one has to face small dethree-dimensional plane Couette problem and the restricted,
nominators. two-dimensional problem without spanwise degrees of free-

Since the solution to this technical problem, achieveddom shows up. The cumbersome denominatdr which
with the help of the variational parametey is of outstand-  doesnot appear in the restricted case, emerges when one
ing practical importance, we illustrate it with an example. eliminatesv,(z) from Eq.(19) in order to derive the Sturm-
Let us first note that the paramete¥sand n are related to  Liouville equation(24). In this way one arrives at Eg23),
each other by the profile’s slope z¢ 0 (or, equivalently, at  whereas in the restricted case,£0) the condition(20) of
z=1): divergence-freeness yields an immediate connection between

vy andv,, . Here lies the reason why an asymptotic theory of
, n upper bounds for the full Couette problem, paralleling the
¢'(0)=p+ 25 (1=p). (34 one developed for the restricted case in R22], seems to
be out of reach. Nevertheless, the model problem has led to
{he identification of the test profild83) as profiles that will
provide the best possible bounds onin the limit of large
Reynolds numbers.

In Fig. 4 we visualize a generic representative of the pro-
efiIe family (33). The profile functiona(13), which becomes a
function of 6, p, andn when applied to the clag83), now
reads

Second, we anticipate the high-Re-scaling behavior of th
optimized profiles: We haveé’' (0)~a Re and¢’(1/2)=p

~ B Re 1, with constantsy and 8, as will be shown later on
[cf. Egs.(39) and (40)]. This implies that the ratim/25 in
Eq. (34) necessarily has to increase about linearly with R
when Re becomes large. We now focus on two differen
parameter combinationga) §=0.5 andn=1000 and(b) &
=0.002 andn=4. In both cases the ratiw/25 takes on the
value 1000 and what matters now is the way the divergences D{g}=
of ¢ (2)/¢’'(z) and $CB)(2)/¢’'(z) manifest themselves

when the profile slope approaches zero. Caé&s is actually

met in high-Re solutions of the variational principle when By constructing the lower envelope of all graphs of the type
the shape of the profiles’ boundary segments is allowed tgshown in Fig. 1, which are produced in the (&g plane by
vary, whereas this shape is artificially kept fixed in cége  the individual test profiles, we are able to compute the opti-
In Figs. 2 and 3 we demonstrate for these two cases thmal upper bound ok, obtainable from the profile€33) for
response 0f(?)(z)/ ¢'(z) to the variation ofp from 0.1 to  Reynolds numbers up to RA(®. Moreover, from the opti-
smaller values, depicting only the relevant intervalz.ofn mized profiles we can extract the asymptotic scaling of the
case(a) the decrease qf merely entails a shift of the smooth profile parameters.

2

E(Zn——l)ﬁ_l}(l_p)ZED(&p,n)_
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1 . bound thatincreasesfor Reynolds numbers slightly above
Re-s. This behavior is related to the singularity of the bal-
ance parametex at Rg5[20,22 and finds its explanation in
a change of the role of the optimal background flow. Below
Re-sthe optimal background flow coincides with the laminar
flow, that is, with a stationary solution to the Navier-Stokes
equations, but above Rethis is no longer the case. There-
fore, the deviationy(x,t) from the background flow below
and above Rg have a different character. For RReg
these deviations are fluctuations around the physically real-
ized laminar flow. Since they will decay at least exponen-
tially in time [23,24], they yield no contribution ta. For
Re>Re:gthe deviations can no longer be regarded as “fluc-
0 ' tuations” in the usual sense and they contribute.to
0 o 0.5 1-6 1 The apparent slight nonsmoothness of our bouopdat
z Re~=200, on the other hand, indeed is an artifact; it is caused
by the restriction ofn to values no less than 4. We have
found empirically that the componekf of the wave vector
minimizing Ro{¢}(k) always vanishes. With this knowl-
edge, the systert28) can be simplified: The 20-component
complex system is converted into a 20-component real one.
As a consequence, the parameter valee8 becomes admis-
sible, which results in a noticeable improvement of the upper
bound in the intermediate range R&Re<700, as shown in
Re-s=82.650 148 871), the inset of Fig. 5.
For Reynolds numbers around 740 the upper bound ex-
c.(Rezg) = Regé=0.012 099 191 758). (35) hibits a pronounced minimum and then ascends to the
asymptotic value
(The numbers in parentheses denote the uncertainty of the
last digit) Up to Regboth bounds coincide; see EJ). The
kink of the upper bound at Reis no artifact caused by our lim c.(Re)=0.010871). (36
particular choice of test profild83): Even though some nu- Re—o
merical improvement of the upper bourgdis possible in the
regime of intermediate Resee below, one will still obtain a

¢ 05+ _ -

FIG. 4. Test profile¢(z) as given by Eq(33), for a generic
parameter sefn=4, §=0.3, andp=0.1).

In Fig. 5 we report our findings for the optimized upper
boundc,_(Re) onc.(Re). Remarkably, this variational bound
separatewith a sharp kinkfrom the lower boundc,(Re)
=Re ! at the energy stability limit, which is locatéd at

This value lies slightly above, but within the uncertainty
‘ ‘ span of, Busse's asymptotic res(®. Thus our variational
a 1 bound possesses the same asymptoti€ $aling as the
4 bound provided by the optimum theory. In Appendix B we
treat the variational principlithouttaking into account the
conditionV-V=0 in Egs.(14). This toy problem provides
8 an illustrative example for our methods and allows a direct
comparison of variational results obtained numerically with
the help of the profile$33) to the corresponding results de-
el rived by Howard[8,1]1] in the framework of the Howard-
1 Busse theory. Our numerical value for the asymptotic bound

0.013
0.012
0.011
0.010

3
4 pertaining to this simplified case, lign...C.,(Re}=0.070 71,
\.,/ i differs from Howard’s analytical value 9/128).070 31 by
> . - = ~ merely 0.6%, even though our variational profiles are spe-
10 10 10 10 10 cifically adapted to the full problem amubtto this simplified
Re case.

A key for understanding the overall behavior of the varia-

FIG. 5. Bounds ort, for the plane Couette flow. Points denote tional upper bound lies in the expressidRs{¢}(k), consid-

the variational upper bouncf(Re) computed numerically with the . - ) . -
test profiles(33); the solid line on the left is the lower bound ered for fixed profileg as functions of the wo-dimensional

c.(Re=Re’l The asymptotic value of the upper bound Wave vectork. We_ have already mentioned the ob_se_rvation
liMge_..C,(RE)=0.010 87(1) lies slightly above, but within the un- that for each considered test profile the absolute minimum of
certainty span of Busse’s asymptotic reg8jt The inset depicts the Ro{d’}(.k) was attained fok,=0. This finding may seem
improvement obtained by presuming that the wave vector minimizSUrPrising at first glance, but becomes at least plausible with
ing Ro{ ¢}(K) has a vanishing component in the streamwise directhe help of the following argument. If one neglects the con-
tion. Solid line: lower boundc,(Re); dashed line: same upper dition V-V =0 in Egs.(14), the minimizingk vector is the
bound as in the main figure; points: improvement of the boundzero vector, as shown in Appendix B. Taking into account
obtained by admitting the parameter value 3. V-V =0 then enforces that the minimizingbecomes non-
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1000

00

FIG. 6. Three-dimensional_surface _plot vigual_izing thée_pe_n- FIG. 7. Three-dimensional surface plot visualizing khdepen-
denf:e ofRo{ ¢} (k) for the laminar profile, which is th,e optlmlzed dence ofRy{ ¢} (k) for the optimized profile belonging to the abso-
profile for Reynolds numbers up to the energy stability limitRe | 1o minimum of the upper bound ar, at Re=Re,~740. Note

. . o . the appearance of two distinct minima on thg axis. Since the
zero. But since there is no characteristic length scale in thgsfje results from the variational principle, both minima have the
streamwise direction, the minimizing, kemains zero. same value.

There is a further feature that strongly influences the Re

erenden_ce of the optim_ized profile parameters and_ the scayjs finding is rather unexpected since we have the simple
ing behavior of the resulting upper bound(Re): The single  |aminar profile at the energy stability limit and seemingly
minimizing wave numberk, that characterizes the varia- entirely different nonlinear profiles with an almost flat inte-
tional solution at comparatively low Re bifurcates to a pairrior part in the asymptotic regime. However, the restricted
of minimizing wave numberk, ; andk, , at the Reynolds model problem has shown that this interior part of the
number asymptotic profiles can be related to the laminar profile, so

Reu~ 460 (37 that th_e asymptotic i_dentity oty ; and k'?s can be proven

& ' analytically by mapping the corresponding eigenvalue prob-

- o T, lems to each othgrR22].
The variational principle POSSESSES the_ |r_1tr|gumg property It is now of coriid(]arable mathematical and physical inter-
that above Rg both corresponding minimal values of est to investigate the Re dependence of the optimized profile
R0{¢}(k)’ R, andR,, are locked to exactly the same value, parameters. We have to keep in mind that the background
i.e., two eigenvalues of the eigenvalue problébd) pass flow U(x)=U ¢(2) is, by constructionnot a horizontally

through zero simultaneoushfhis degeneracy reflects the ; '
fact that, physically speaking, the sensitivity of the Varia_av.era'ged mean ]‘Iow. Qn the other hand,'the optimal pr_oflles
¢ invite comparison with physically realized flow profiles

tional problem to the behavior of the profiles in the boundary; 19], even though such a comparison remains speculative

layers separates from the sensitivity to the profiles in th igure 9 shows the metamorphosis of the optimal profiles

interior. A fairly precise mathematical formulation of this ith increasing Reynolds number. By a close inspection of

statement can be given for the Couette problem without’v ) I o
: he data underlying this figure, we can clearly distinguish
spanwise degrees of freeddP]. four different regim%s 9 y 9
The consequences of this bifurcation for the upper bound® '

onc, are dramaticits approximateRe ** dependence that
prevails forRe<Re; changes to the asymptotiRe’ behav-

ior, while the bound passes through its global minimum 103 L o
Cc. min=0.009 70 at Rg,~740. (39
. L. 102 | ..." i
In order to convey some idea for the way the variational ky i o Re

principle works, we draviRy{ ¢} (k) as function of both com-

ponents ok, for the optimized profiles corresponding to the 27t
Reynolds numbers Rg[Fig. 6; cf. Eq.(35)] and Re,;, [Fig. 10' b Re .
7; cf. Eq.(38)], respectively. Figure 8 depicts the minimizing B i

values ofk, that belong to the variational bound displayed in l /
Fig. 5. Whereas the uppéy, branch scales proportionally to 100k 4 i
Re in the limit of large Re, the lower branch approaches a _/\-— .............
constant value. This value reciselythe one that also cor- > = v = v
responds to the energy stability limit; 10 10 10 10 10
Re
- ky1 kes C :
lim Py 2—~O.4960. FIG. 8. Minimizing wave numbgs) k, corresponding to the
T T

upper bound ort, displayed in Fig. 5.

Re—x
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FIG. 9. Three-dimensional plot visualizing the metamorphosisﬂovl\jlcgbﬁg'scl:aonTe%a!tsrc;? ?]]; l;?}gh?jw?r(Eg&;r(gg)gﬁgic_?ge_ne
of the optimized variational profiles with the increase of the Rey- : g ) - - top

nolds number. We have depicted the most important Re interval o@OSt hor!zo_ntal solid line: upper bound obtained by |_30_enng and
o A . ST onstantin in Refg.14,17] with the help of an overrestrictive pro-
a logarithmic scale, beginning with the energy stability limitzRe

L i - file constraint and piecewise linear profile&s(Re)~0.088 for Re
and ending in the scaling regime RRe;. >11.32. Dash-dotted line: improved bound or(Re) derived by
] ) ] Gebhardtet al. in Ref. [18] from the analytical solution of the

(i) For Rgs<Re<Re;~160,a deformation of the laminar  poering-Constantin principle with the overrestrictive constraint;
profile takes place. Whereas the thicknéssf the boundary ¢ (Re)~0.079 for Re>16.98. Long-dashed line: further improve-
layers remains fixed at 0.5 and the polynomial omi@f the  ment due to the introduction of the balance parameter in [R6F;
boundary segments remains at the smallest possible value @(Re)—0.066. This bound is still calculated analytically utilizing
the profile’s slopep in the interior decreases from 1 to al- the overrestrictive profile constraint. Heavy dots: upper bound for
most the limiting value 0. In this regime the upper bound the plane Couette flow obtained in this work from the variational
reaches its maximum and starts to descend. principle (12) with the actual spectral constrai(t4) (cf. Fig. 5);

(i) The following regime RgesRe<Re,~670 is charac- C.(Re)—0.010871). The variational profiles are given by Eg.
terized by thedevelopment of boundary layefBhe param- (33), includingn=3 as an admissible parameter. Joining dashed
eter § decreases to its minimal value of about 0.14, with line: asymptotic upper boun®) derived by Busse in Ref$9,10;
remaining fixed at 3, while the slope increases again. In C-(R€)}—0.0101). The shaded area denotes the estimated uncer-
this regime the bifurcation of the mlnlmlzmgy occurs, tainty of this bound. Triangles: experimental dissipation rates for

which alters the previous approximate B8 behavior of the (1€ Plane Couette flow measured by Reichptdj. Circles: experi-
upper bound. mental dissipation rates for the_Taonr-Couette ;ystem with small
(ii ) In the next regime Re<Re<Re;~1845 we observe a gap as measured by Lathrop, Fineberg, and Swinhay
dramatic change of the shape of the optimized profile’'s
boundary segments. The parameter characterizing the ¢'(3)=p~B Ret, (40
shape of these segments by means of their polynomial order,
increases from the smallest possible value3 to n=34,  with constantsy and 3. Parallel to this power-law change of
thus steepening the profiles in the immediate vicinity of eactthe profile, the upper bound ar) ascends smoothly to its
boundary, thereby effectively generating new internal boundasymptotic value.
ary layers within the original boundary layers. As a conse- If we had not been forced by practical numerical reasons
guence of thistructural reorganization of the boundary lay- to constrain the shape parameterto values less than or
ers the entire boundary segments, the extensions of whickqual to 1000, we would have preserved the asymptotic Re
are quantified by, start to reach deeper and deeper into thescaling ofn, while the parametes would have remained
bulk and finally join again,s taking on its maximal value fixed at 0.5. In our numerics the optimalbecomes 1000 at
0.5. In this regime, the upper bound passes through its miniRe~51 880, and keeping fixed atn= 1000 for even higher
mum [see Eq.(38)] and then changes the sign of its curva- Re instead of allowing it to increase further then foréds
ture. decrease, as follows from E(B9). The ensuing increase of
(iv) For Re above Rewe find simple scaling laws for the the asymptotic value of the upper bound(compared to the
optimal profile parameters. These scaling laws give rise to galue that would be obtainable if one allowed arbitrarily
power-law change of the profileith increasing Re: The large n) is quite small, as can be seen from the fact that
slope at the boundary=0 (or atz=1) is given by C.(51880)=0.010832(1) differs merely by about 0.3%
from the asymptotic valué€36).

n

¢'(0)~ 55~a Re, (39 V. CONCLUSIONS

Figure 10 gives a synopsis of the rigorous upper bounds
while the slope at the midpoirzt=1/2 becomes on the dimensionless rate of energy dissipaii®nin plane
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Couette flow that have been found so far. The topmost thref22] has led to the conclusion that the first Re-independent
lines indicate results derived with the help of an overrestric-minimum reflects the response of the variational principle to
tive profile constrain{17,18,2Q stemming from functional the optimized profiles solely in the interior of the fluid layer,
estimates. This sharpened constraint oversatisfies the actughereas the second minimum reflects the response to solely
spectral constraintl4) and thus leads to bounds exceedingthe profiles’ boundary segments. Thus the two lengths enter-
the asymptotic Busse bourt8) by factors of 8.8, 7.9, or 6.6, ing the variational solutions can be identified as basid@lly
respectively. Only if the spectral constraint is properlythe extension of the interior flat part of the optimized profile
implemented and evaluated, as done in this work, can onend (ii) the effective width of its boundary segments. It is
obtain a rigorous bound that practically coincides with thestructural insight of this kind that will be required for the
Busse bound in the asymptotic regime, thereby confirmingormulation of a more refined variational principle that might
both Busse’s pioneering woill®,10] and Kerswell's recent ultimately allow one to decide whether there are corrections
analysis[19]. to classical scaling.

However, it must be clearly recognized that much more For the moment, the comparison of our variational bound
has been achieved than the confirmation of a 25-year-oldith the experimental data shown in Fig. 10 demands some
difficult result. Now a variational principle is available that modesty. The bound clearly is far from being sharp; the dif-
not only produces asymptotic bounds of high quality butference between the variational boued and the corre-
yields rigorous bounds of the same quality in the entire rangeponding data measured by Reichadd] for the plane Cou-
from low to asymptotically high Reynolds numbers. For theette flow or by Lathrop, Fineberg, and Swinngys] for the
plane Couette system discussed in this paper, the boursinall-gap Taylor-Couette system still spans an order of mag-
shows a remarkable structure, notably a pronounced miniitude. In short, one important step has been made, but there
mum followed by a Re range between 1000 and 1800 ins still a long way to go.
which the bound’s curvature changes its sign. This occurs at
about those Reynolds numbers where typical laboratory ACKNOWLEDGMENTS

shear flows start to become turbulent. It is tempting to specu- This work was supported by the Deutsche Forschunasae-
late about this coincidence, but such considerations are b?nelnschaft via the FS)F())nderforichun <bereich “NIChﬂIn%a?e
yond the scope of the present work. 9

Of considerable interest is the mechanism that determinelgynamlk SFB 185 and by the German-Israeli Foundation.

the variational upper bound. As depicted in Fig. 8, the mini-
mizing wave numbek, bifurcates at Rg~460, giving rise

to one minimizingk, branch that asymptotically approaches
a constant and another one that scales linearly with Re. Since Keeping in mind that we are interested not in the calcu-
both corresponding minima determine the solutions to thdation of the entire spectrum furnished by the Sturm-
variational principle by taking on the same value, as de-diouville eigenvalue problent24) and(25) but in the deter-
scribed in Sec. 1V, there are two characteristic lengths thamination of that value oR where the smallest eigenvalue
enter into the solution, one scaling with Rand the other passes through zero, we can et0 right from the outset.
with Re™L. The analysis of the restricted Couette problemWe thus obtain the sixth-order Sturm-Liouville problem

APPENDIX A: COMPOUND MATRIX METHOD
FOR THE SIXTH-ORDER STURM-LIOUVILLE PROBLEM

(2) (3) (2)\ 2 (2)
u§5>—2";—,u;5>— 3k2+i——2(‘/; ) v+ 4k2q;—+|k qu’] @
(3) (2)\ 2 (2)
+ 3|<4+21<2[";T—2<‘fZS +i%R¢>(2) v;2>—[2k44; +ik R{k%' ¢><3>+(";) ]u;
(3) (2) (3) (2 (2))3
—{ K8+ K4 (’;——2((@ ) } 1(k Ro’ )2+| x {k2¢<2> ¢><4>+3q5 ¢¢ 2(((1;,))2 ]vz=0, (A1)

together with the boundary conditions

1
V(2)|201=0, v4(2)|,=01=0, |vP(2)— 570" (2) =0. (A2)

The eigenvalues of this problem are those valueR @fhere both Eqs(Al) and(A2) are satisfied.
In order to integrate EqA1), one has to pose suitable initial conditions at one of the boundaries, let as-§ayVe define
the six-vectors

1 T
Vo2)=| v(2) 05(2), v<2)<z)—Wv?”(z),v§3><z>,v§4>(z>,v§5>(z>)
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and consider the three linearly independent fundamental solWiof(&), V,x(z), andV,3(z) to Eq.(Al) that emerge from
the initial values

V,1(0)=(0,0,0,1,0,07, V,0)=(0,0,0,0,1,0", V,50)=(0,0,0,0,0,1", (A3)

respectively. By construction, each of these three solutions satisfies the con@iiret z=0 and the most general solution
obeying these one-sided BCs is just a superposition of them. The solution that also satisfies the cgA&itiahshe other
boundaryz=1 is then singled out by the requirement

Uz,l(l) UZ,Z(l) Uz,3(1)

v, 4(1 vl (1 vl o1
Det z,1( ) z,2( ) z,3( ) -0.

1 1 1
(D)= 520001 vBD)- 55031 vE(L) - 5 viE(L)

But from the numerical point of view the evaluation of this nential damping factor. The reason for this rescaling is re-
determinant, which in most cases necessitates the subtractitated to the fact that the optimized profiles tend to become
of large numbers of almost equal magnitude from each otheflat in the interior of the fluid layer when Re becomes high,
is rather inconvenient. An efficient and numerically stablewhile the extension of the boundary segments, where the
way to bypass this difficulty has become known @sn-  profiles have to bend in order to meet the boundary condi-
pound matrix methoéh the literature; see, e.g., R¢R7] for  tions ¢(0)=0 and ¢(1)=1, tends to zero. This motivates
an introduction to the method or R¢22] for applications to  one to neglect the profiles’ boundary conditions altogether
the restricted Couette problem. To apply this technique to thand to consider Eq/A1) with a linear profile¢(z) =cz, so

full Couette problem studied in this paper, we define a vectothat ¢’ becomes equal to the constardnd all higher profile
Y(2)=(y1(2),....y2o(2))T, the 20 components of which are derivatives vanish. In the limit—0 one then arrives at
proportional to the X3 minors of the 6<3 solution matrix

that containg/, ; as its firstV, , as its second, and, ; as its v®—3k%M +3k* 2 —kbp,=0, (A5)
third column:
—e , @ _ L1 with the BCs(A2). Applying the compound matrix technique
Yi=K2 SOM0)V2,0(1)V2,0(2)| Varo(3) ™ 242 Vz0(3) | as sketched above to this boundary-value problem, one finds

a 20-component system of first-order equations as in the case
of a generakp, but now with constant coefficients. This sys-
tem can be solved analytically by standard means, but an
accurate numerical solution for lardés will be possible
only if the solutions do not grovor decreaseexponentially.

The summations involve all permutationsof 1,2,3. The Thus the intended numerical approach forces us to rescale
powers ofk multiplying each sum are determined in the the system such that the largest eigenvalue of the rescaled
following way. The expression defining, carries the high- system’s coefficient matrix is exactly equal to zero. It turns
est total number of derivatives, namely, 12; this expression igut to be possible to determine the Jordan normal form of the
multiplied by k°. Descending in the index from 20 to 1, the 20X 20 matrix resulting from Eq(A5) analytically; the larg-
number of derivatives is successively diminished; each deest eigenvalue is nondegenerate and equklsHence the
rivative less gives a factor dfé more. This guarantees two transformation

things: First, the initial condition&9) are independent ¥,

and second, all components have the same order of magni- Vl(z)zyl(z)e*:*kz, ey S/’zo(z)zyzo(z)e*3kz (AB)

tude.

From Eg.(Al) one then obtains a system of first-order has the desired effect. Applying the very same transforma-
equations that already closely resembles the sy$d@rthat tion also to the system given by the compound matrix
we have studied numerically, with the only difference that inmethod for the case of a general candidate prafiléand
each componerit (i=1, ...,20) thaerm — 3ky; appearing finally omitting the tildg, changes that system merely by
in Egs. (28) is still missing. It is obvious that the initial adding—3Kky; to theith component and thus produces our
conditions(29) and the boundary conditio(80) follow di- system (28). We emphasize that the identification of the
rectly from Eqgs.(A3) and the definitiongA4). proper exponential scaling factor and the actual scaling trans-

This term—3Kky; in theith component of the system is of formation(A6) is crucial for obtaining equations that remain
particular importance. The restricted Couette problem hasumerically stable even in the regime of asymptotically high
taught us the lessdi22] that the system of first-order equa- Reynolds numbers.
tions directly provided by the compound matrix method is A striking feature found in the study of the restricted Cou-
not suited for numerical analysis in the high-Re regime,ette problem, where the system corresponding to E2f.
where one has to monitor large valueskofOne rather has to consists of merely six equatioi22], is the possibility to
rescale each component of the system by a common expoeduce thatcomplexsix-component system to eeal six-

_ 3 4 5
Yoo=2 S0 10500 - (A4)
g
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component system, thereby halving the number of equations. ' ' '
This simplification could be obtained from taking [yw(2)] 0.07
=0 for all z. Even though we have strong numerical evi-

dence that the imaginary part of the compone(z) van-

ishes also in the present case, we did not succeed in deriving ¢

a reduced system for arbitragyy Hence we make a virtue of

necessity and keep the full systg@8), but exploit our in- 0.06
sight for controlling the accuracy of the numerical solutions

by monitoring the magnitude of lry,(2)].

: Re=21"=19.74
APPENDIX B: NEGLECTING V-V=0 /
In this appendix we study the variational problem for en- 0.05 : ‘ : ‘ : ‘ :
ergy dissipation in plane Couette flow without requiring that 20 40 60 80 100
the solutionsV(x) to the eigenvalue problen{l4) be Re

divergence-free. Then the solutions to this eigenvalue prob- .
lem are determined in an enlarged space of functions, so that ';IG'l 11tinB°tl:]ndS Onrgsit(iR;),f\c,)r:tgeiEl?Qe Ciouﬁf}el flow Obt‘;’nﬁd
the bound obtainable for this simplified problem naturally > "e9'ecting the condiio € elgenvalue equations

th d th pt di pS V. H y&l14). Points denote the variational upper bowngRe), computed
Cann(.) . € as goo as_ € one repor € .In ec. .' °"Ye"e umerically from the test profile@3) with fixed parameten=2;
the distinct value of this toy model lies in two points. First,

. . on the solid line on the left is the lower bourd(Re)=Re 1.
we can illustrate, in condensed form, the principles of both w(Re)=

the background flow method itself and the use of the comy gxact analogy to the full problem, the main task posed by
pound matrix technique. Second, this model allows an imy,e gpectral constraint is to calculate for givérand k=0

mediate quantit_ativ_e c_omparison of our numerically Cal‘?u'the smallesRR value Ry{ ¢} (k) where Eq.(BS) is fulfilled
lated, asymptotlc dissipation bound with the correspondmgand then to minimize over ak in order to extracR.{ ).
value provided by the Howard-Busse theory. But now the second-order differential equatitB6) shows

To bgg,in with, the equation(;l?)_—(zp) for the spectral 5 theminimizing k value K ¢} equals zerdor each¢(z).
constraint’s eigenvalue problem simplify enormously whenIn the final step, the optimal upper bound ar(Re) follows

the conditionV -V =0 is skipped: from the inequality(16).
The laminar profile¢(z) =z yields the “energy stability

M= =2(0;=K2)v, Rz, BD Jimit” for our toy problem,
Nvy=—2(55—K)v,, (B2) Rezs=27°~19.74, ¢,(Reeg)=1/2m?~0.050 66.
Av,=—2(02—k?)v,+Re'vy. (83)  In order to computeR,{#} for nonlaminar profiles we now

rewrite the second-order equatigB5) as a system of first-
Equation(B2) separates from the others and we immediatelyorder — equations by  defining the vectory(z)

obtain a solution that is compatible with the BC&L) for =(2),v'(2))". In this way we get
each andk, namely,v,(z)=0. Introducing the functions , , ) ,
v(2)=v,(2) —v2) andw(z)=v.(2) +v,(2), Egs.(B1) and Y1=Y2, Y2=—3 R¢'y1, (B6)

B3) transform into — .
(B3) where we have s&=0; initial conditions atz=0 and BCs

)\v=—2(a§—k2)v—R¢>’v, atz=1 are given by
0)=(0,1)7, 1)=0. B7
= 2 kW RSW Y(0)=(0,0", yi(1) (B7)
This reformulation of the Sturm-Liouville probleB5) cor-
the BCs read)(0)=w(0)=0 andv(1)=w(1)=0. responds precisely to the reformulation provided by the com-

We now assume that the profile functiop$z) satisfy, in  pound matrix method. If one compares this simple boundary-
addition to the conditions posed in Ed41), also the addi- value problen(B6) and(B7) to the corresponding boundary-

tional monotony condition value problem(28)—(30), one gets a vivid impression of the
complications introduced into the variational principle by the
¢'(2)=0 for Oszs<l (B4  conditionV-V=0.

Figure 11 shows the numerically computed variational
Our test profiles(33) obviously comply with this plausible ypper bound or,(Re) that results from the inequalitit2)
requirement. Hence, if the componem{z) does not vanish \yhenVv.Vv=0 is neglected, i.e., when the spectral constraint
identically, the positive definiteness G‘fﬁg will enforce \ is translated into EqgB6) and (B7), and the previous test
>0 for positive R. Consequently, fon=0 andR>0 we  profiles(33) are employed. For simplicity, we have fixed the
have w(z)=0 and are left with the second-order Sturm- parameten to the valuen=2. Interestingly, this bound ex-
Liouville boundary-value problem hibits the same shape as the one that had been found analyti-
cally [20] when another overrestrictive profile constraint
v"—(k’>— 1 R¢p')v=0, v(0)=v(1)=0. (B5  stemming from functional estimates had been used instead of
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the actual spectral constraint; that bound is indicated by the . 9
long-dashed line in Fig. 10. The best possible asymptotic lim ¢,(Re)=755~0.070 31.
upper boun&_(Re) for the toy model withouV - V=0 can Re—e

be found for a noninteger value af namely,n..~3.40:

L - The work of Kerswell[19] suggests that both the Howard-
RI(LTOC c.(R§=0.07071. Busse theory and the background flow method, when fully
exhausted, give the same asymptotic upper bound. Even
This value has to be compared to the bound calculated an&hough we have deliberately used test profiles thatree
lytically by Howard [8,11], also without accounting for specifically adapted to the present toy model, we have
divergence-freeness: missed Howard’s bound by merely 0.57%.
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